Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum

Abstract:
A cheap and effective new catalyst developed by researchers at the University of California, Berkeley, can generate hydrogen fuel from water just as efficiently as platinum, currently the best -- but also most expensive -- water-splitting catalyst out there.

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum

Berkeley, CA | Posted on December 14th, 2018

The catalyst, which is composed of nanometer-thin sheets of metal carbide, is manufactured using a self-assembly process that relies on a surprising ingredient: gelatin, the material that gives Jell-O its jiggle.

"Platinum is expensive, so it would be desirable to find other alternative materials to replace it," said senior author Liwei Lin, professor of mechanical engineering at UC Berkeley. "We are actually using something similar to the Jell-O that you can eat as the foundation, and mixing it with some of the abundant earth elements to create an inexpensive new material for important catalytic reactions."

This study was made available online in Oct. 2018 in the journal Advanced Materials ahead of final publication in print on Dec. 13.

A zap of electricity can break apart the strong bonds that tie water molecules together, creating oxygen and hydrogen gas, the latter of which is an extremely valuable source of energy for powering hydrogen fuel cells. Hydrogen gas can also be used to help store energy from renewable yet intermittent energy sources like solar and wind power, which produce excess electricity when the sun shines or when the wind blows, but which go dormant on rainy or calm days.

But simply sticking an electrode in a glass of water is an extremely inefficient method of generating hydrogen gas. For the past 20 years, scientists have been searching for catalysts that can speed up this reaction, making it practical for large-scale use.

"The traditional way of using water gas to generate hydrogen still dominates in industry. However, this method produces carbon dioxide as byproduct," said first author Xining Zang, who conducted the research as a graduate student in mechanical engineering at UC Berkeley. "Electrocatalytic hydrogen generation is growing in the past decade, following the global demand to lower emissions. Developing a highly efficient and low-cost catalyst for electrohydrolysis will bring profound technical, economical and societal benefit."

To create the catalyst, the researchers followed a recipe nearly as simple as making Jell-O from a box. They mixed gelatin and a metal ion -- either molybdenum, tungsten or cobalt -- with water, and then let the mixture dry.

"We believe that as gelatin dries, it self-assembles layer by layer," Lin said. "The metal ion is carried by the gelatin, so when the gelatin self-assembles, your metal ion is also arranged into these flat layers, and these flat sheets are what give Jell-O its characteristic mirror-like surface."

Heating the mixture to 600 degrees Celsius triggers the metal ion to react with the carbon atoms in the gelatin, forming large, nanometer-thin sheets of metal carbide. The unreacted gelatin burns away.

The researchers tested the efficiency of the catalysts by placing them in water and running an electric current through them. When stacked up against each other, molybdenum carbide split water the most efficiently, followed by tungsten carbide and then cobalt carbide, which didn't form thin layers as well as the other two. Mixing molybdenum ions with a small amount of cobalt boosted the performance even more.

"It is possible that other forms of carbide may provide even better performance," Lin said.

The two-dimensional shape of the catalyst is one of the reasons why it is so successful. That is because the water has to be in contact with the surface of the catalyst in order to do its job, and the large surface area of the sheets mean that the metal carbides are extremely efficient for their weight.

Because the recipe is so simple, it could easily be scaled up to produce large quantities of the catalyst, the researchers say.

"We found that the performance is very close to the best catalyst made of platinum and carbon, which is the gold standard in this area," Lin said. "This means that we can replace the very expensive platinum with our material, which is made in a very scalable manufacturing process."

###

Co-authors on the study are Lujie Yang, Buxuan Li and Minsong Wei of UC Berkeley, J. Nathan Hohman and Chenhui Zhu of Lawrence Berkeley National Lab; Wenshu Chen and Jiajun Gu of Shanghai Jiao Tong University; Xiaolong Zou and Jiaming Liang of the Shenzhen Institute; and Mohan Sanghasadasa of the U.S. Army RDECOM AMRDEC.

This research was supported by the Berkeley Sensor and Actuator Center, the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy (DE-AC02-05CH11231, DE-AC02-05CH11231and DE-AC02-05CH11231) and Youth 1000- Talent Program of China, the Development and Reform Commission of Shenzhen Municipality.

####

For more information, please click here

Contacts:
Kara Manke

510-643-7741

@UCBerkeleyNews

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

uSEE breakthrough unlocks the nanoscale world on standard biology lab equipment August 16th, 2019

Possible Futures

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Discoveries

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Materials/Metamaterials

You're not so tough, h-BN: Rice University chemists find new path to make strong 2D material better for applications August 14th, 2019

A modified device fabrication process achieves enhanced spin transport in graphene August 6th, 2019

Rice lab produces simple fluorescent surfactants: Compounds show promise for use in medicine, manufacturing August 5th, 2019

Wood You Like Some Fresh Water? New treatment for wood makes a membrane to extract fresh water August 5th, 2019

Announcements

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Cyborg heart could help scientists better understand the human organ August 21st, 2019

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Stanford builds a heat shield just 10 atoms thick to protect electronic devices: Atomically thin heat shields could be up to 50,000 times thinner than current insulating materials in cell phones and laptops August 19th, 2019

Energy

New synthesis method opens up possibilities for organic electronics August 7th, 2019

Physicists make graphene discovery that could help develop superconductors: Rutgers-led research could reduce energy use, improve electronic devices August 1st, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Fuel Cells

Activity of fuel cell catalysts doubled: Modelling leads to the optimum size for platinum fuel cell catalysts July 5th, 2019

Artificial photosynthesis transforms carbon dioxide into liquefiable fuels May 22nd, 2019

Current generation via quantum proton transfer February 1st, 2019

High-performance self-assembled catalyst for SOFC October 12th, 2018

Research partnerships

Research brief: A novel cellular process to engulf nano-sized materials August 20th, 2019

A first for cancer research’: New approach to study tumors August 20th, 2019

Optofluidic chip with nanopore 'smart gate' developed for single molecule analysis: Programmable device enables on-demand delivery of individual biomolecules with feedback-controlled gating for high-throughput analysis August 16th, 2019

Damaged hearts rewired with nanotube fibers: Texas Heart doctors confirm Rice-made, conductive carbon threads are electrical bridges August 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project