Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Three CEA Projects Awarded European Research Council Synergy Grants

Left: simulation of the intense magnetic fields generated inside the Sun by dynamo effect. Right: simulation of internal magnetic fields emerging in the solar atmosphere. © CEA/University of Oslo
Left: simulation of the intense magnetic fields generated inside the Sun by dynamo effect. Right: simulation of internal magnetic fields emerging in the solar atmosphere. © CEA/University of Oslo

Abstract:
Three ERC Synergy projects, which fund two to four researchers from several laboratories for six years, will be co-lead by the CEA, announced the European Research Council on 23 October 2018. This highly selective program is dedicated to exploratory research and this year, has recognized the CEA’s scientific excellence in the subtle understanding and technological use of the laws of physics, from quantum physics to astrophysics.

Three CEA Projects Awarded European Research Council Synergy Grants

Grenoble, France | Posted on November 26th, 2018

The European Research Council (ERC) has just published the list of 27 projects it selected out of the 299 submitted to the ERC Synergy 2018 call for projects. Among them, the CEA’s laboratories have 3 winners. In order to ensure Europe's long-term competitiveness, the ERC's mission is to support world-class frontier research of excellence through highly competitive calls for projects. With a budget of 250 million euros, the “Synergy” category supports two to four researchers and their teams from different laboratories to jointly carry out an ambitious research project over a six-year period. With 35 million euros in European subsidies granted to these three projects, this is a strong recognition of the expertise of the CEA and its partners within the European Research Area.



From the quantum world to the stars, three new projects…

ReNewQuantum (for Recursive and Exact New Quantum)

While quantum physics is omnipresent in most recent science and technology, quantum theory needs mathematical tools. These are currently somewhat lacking, in particular for complex quantum systems and approximation methods.

This is why the ReNewQuantum project is aiming to develop a mathematical method of semi-classical approximation[1] of quantum theories, which could benefit the entire scientific community, whether it is working on chaotic systems, quantum field theories or string theory. Building on concrete success already achieved in some quantum systems, ReNewQuantum proposes using modern geometry to reinterpret quantum theories and, in particular, to reinterpret semi-classical corrections as geometric objects. The project aims for a better understanding of the entire set of corrections, which would enable more effective computing. The objective is therefore to generalize these geometric methods to create a mathematical applicable to almost all quantum theories.



QuCube (for 3D integration technology for silicon spin qubits)[2]

Applied to the field of computing, quantum physics could revolutionize high performance computing, theoretically solving problems that conventional supercomputers are unable to solve. All major industries (transport, finance, energy, chemistry, pharmaceuticals, etc.) could benefit from quantum computing. In practice, this research has produced the first proofs of concept for quantum bits – the quantum equivalent of the most basic bit in elementary computing – but it is not yet certain that these first demonstrations can be reproduced on a large scale. In this context, the QuCube project aims to develop a quantum processor based on silicon, the base material already used in what is known as classical electronics. The processor will support at least one hundred quantum bits, or qubits, currently a first in terms of qubit numbers. The success of the project requires technological breakthroughs, including architecture implementation, the control of quantum bit variability or the implementation of quantum error correction processes, and finally a thorough understanding of conventional control electronics, for example on issues related to thermal dissipation.



Whole Sun (for The Whole Sun Project: Untangling the complex physical mechanisms behind our eruptive magnetic star and its twins)[3]

Our Sun is an active magnetic star that, due to its variable and eruptive behavior, has a direct impact on our technological society. However, despite decades of research, many questions remain unanswered. While this research into solar physics has so far focused on either the structure and dynamics of the inside of the Sun or, separately, on the surface and atmosphere of the Sun, the Whole Sun project aims to understand the Sun as a whole by consolidating research into these two major solar regions. A detailed study of the (thermo) dynamic and magnetic interaction between the deep solar interior, the surface of the Sun and the highly stratified atmosphere is absolutely vital if we hope to tackle the fundamental problems of solar physics (such as the origin of sunspots and the 11-year cycle; the presence of a warm atmosphere, etc.). In conjunction with the development of what is known as ‘exascale’ computers[4], Whole Sun will deliver the most advanced multi-resolution solar code in order to jointly address global and local, macrophysical and microphysical aspects of solar dynamics. Finally, extending this integrated approach led by Whole Sun to solar analogue stars that have different rotational speeds and chemical compositions will also provide a deeper understanding of stellar magnetism and activity.

[1] That is, starting from a classical system and calculating the successive quantum corrections.

[2] With CNRS and the participation of teams from the Université Grenoble Alpes.

[3] With the Max Planck Institute for Solar System Research (Germany), the University of Oslo (Norway) and the University of St Andrews (United Kingdom).

[4] Exascale computers are capable of performing a billion billion calculations per second. CEA is actively involved in working to develop this new generation of supercomputers.

[5] Not including these three new Synergy projects.



...join the CEA's many other ERC projects

Since its launch in 2007, ERC has become a label for all researchers seeking independence and a real leadership role in their discipline. A total of 88 ERC-funded projects[5] have been carried out in the CEA laboratories or joint units involving the CEA, 39 of which are still in progress. The thematic diversity of the CEA’s ERC project projects, which mainly concern fundamental research but also focus on technology maturation, demonstrates the broad expertise of the CEA's scientific staff. ERC’s aim to advance knowledge but also to transform scientific discoveries into innovative products and services that create economic value and meet the needs of society. Eleven ERC-funded projects at the CEA have received an additional ERC Proof of Concept funding to promote the results of the initial project with high innovation potential. In France, the CEA is among the top three organizations hosting the most ERC recipients.

####

About CEA
The French Alternative Energies and Atomic Energy Commission (CEA) is a public research organization working in four main areas: defense and security, nuclear and renewable energies, technological research for industry and fundamental research. Building on its recognized expertise, CEA takes part in organizing cooperation projects with a wide range of academic and industrial partners. With its 16,000 researchers and employees, it is a major player in European research and is also expanding its international presence. More information: www.cea.fr

About ERC

The role of the European Research Council (ERC) is to support frontier research in Europe with highly competitive calls for projects. With more than €1.85 billion available in 2018 – and already more than €2 billion planned for 2019, the ERC offers researchers very strong support for their ambitious projects. ERC's bottom-up approach to research encourages the initiative of researchers from all scientific fields. The quality and originality of an idea takes precedence over the thematic area. The objective is to encourage scientific discovery and new technologies that will create new markets and jobs, as well as innovations that will benefit society. Projects are selected following a scientific evaluation by leading experts from Europe and around the world. Funding ranging from €1.5m to €10m for a period of 5 to 6 years is allocated individually to the researchers who carry out the projects.

For more information, please click here

Contacts:
Press Contact

Agency

+33 6 74 93 23 47

Copyright © CEA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Let's not make big waves: A team of researchers generates ultra-short spin waves in an astoundingly simple material March 29th, 2019

News and information

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Quantum Physics

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

'Quantum Rhapsodies' performance explores quantum physics, its role in our universe April 5th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New way to beat the heat in electronics: Rice University lab's flexible insulator offers high strength and superior thermal conduction May 16th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Possible Futures

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Chip Technology

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Skoltech researchers developed new perovskite-inspired semiconductors for electronic devices May 13th, 2019

2D insulators with ferromagnetism are rare; researchers just identified a new one May 10th, 2019

Computing faster with quasi-particles May 10th, 2019

Quantum Computing

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Computing faster with quasi-particles May 10th, 2019

Coincidence helps with quantum measurements: New method enables quantum simulations on larger systems April 22nd, 2019

Announcements

Neutrons unlock the secrets of limoncello May 21st, 2019

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth May 17th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Aerospace/Space

Better microring sensors for optical applications May 10th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

New hybrid energy method could fuel the future of rockets, spacecraft for exploration: Nontraditional route shown to increase performance, burn rate April 9th, 2019

VP Pence Announces Humans on Moon by 2024 April 2nd, 2019

Alliances/Trade associations/Partnerships/Distributorships

Nanoscribe is Technology Partner of the Research Project MiLiQuant: 3D microfabrication meets quantum technology - Miniaturized light sources for industrial use in the fields of quantum sensor technology and quantum imaging April 1st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Research partnerships

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

New Argonne coating could have big implications for lithium batteries May 14th, 2019

Sculpting Super-Fast Light Pulses: NIST Nanopillars Shape Light Precisely for Practical Applications May 3rd, 2019

Exploring New Ways to Control Thermal Radiation April 29th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project