Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics

Computer models created by scientists at the University of Southern California show the binding energies between atoms in tellurene synthesized at Rice University. The three layers in ultrathin tellurene are not perfectly aligned, giving the material metallic and semiconducting properties. (Credit: Ajayan Research Group/Rice University)
Computer models created by scientists at the University of Southern California show the binding energies between atoms in tellurene synthesized at Rice University. The three layers in ultrathin tellurene are not perfectly aligned, giving the material metallic and semiconducting properties. (Credit: Ajayan Research Group/Rice University)

Abstract:
In the way things often happens in science, Amey Apte wasn't looking for two-dimensional tellurium while experimenting with materials at Rice University. But there it was.

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics

Houston, TX | Posted on October 26th, 2018

"It's like I tried to find a penny and instead found a dollar," he said.

Apte and his colleagues made tellurium, a rare metal, into a film less than a nanometer (one-billionth of a meter) thick by melting a powder of the element at high temperature and blowing the atoms onto a surface. He said the resulting material, tellurene, shows promise for next-generation, near-infrared solar cells and other optoelectronic applications that rely on the manipulation of light.

The slim jackpot is described in 2D Materials.

"I was trying to grow a transition metal dichalcogenide, tungsten ditelluride, but because tungsten has a high melting point it was difficult," said Apte, a graduate student in the Rice lab of materials scientist Pulickel Ajayan and co-lead author of the paper. "But I observed some other films that caught my interest."

The other films turned out to be ultrathin crystals of pure tellurium. Further experiments led the researchers to create the new material in two forms: A large, consistent film about 6 nanometers thick that covered a centimeter-square surface, and a three-atomic-layer film that measured less than a nanometer thick.

"Transition metal dichalcogenides are all the rage these days, but those are all compound 2D materials," Ajayan said. "This material is a single element and shows as much structural richness and variety as a compound, so 2D tellurium is interesting from both a theoretical and experimental standpoint. Single element chalcogen layers of atomic thinness would be interesting but have not been studied much."

Images taken with Rice's powerful electron microscope showed the atomic layers had arranged themselves precisely as theory predicted, as graphene-like hexagonal sheets slightly offset to one another. The tellurene, made in a 650-degree Celsius (1,202-degree Fahrenheit) furnace by melting bulk tellurium powder, also appeared to be gently buckled in a way that subtly changes the relationships between the atoms on each layer.

"Because of that, we see different polytypes, which means the crystal structure of the material remains the same but the atomic arrangement can differ based on how the layers are stacked," Apte said. "In this case, the three polytypes we see under the microscope match theoretically predicted structures and have completely different lattice arrangements that give each phase different properties."

"The in-plane anisotropy also means that the properties of optical absorption, transmission or electrical conductivity are going to be different in the two principal directions," said Rice graduate student and co-lead author Elizabeth Bianco. "For instance, tellurene can show electrical conduction up to three orders of magnitude higher than molybdenum disulfide, and it would be useful in optoelectronics."

Thicker tellurium films were also made under vacuum at room temperature via pulsed laser deposition, which blasted atoms from bulk and allowed them to form a stable film on a magnesium oxide surface.

Tellurene could have topological properties with potential benefits for spintronics and magneto-electronics. "Tellurium atoms are much heavier than carbon," Apte said. "They show a phenomenon called spin-orbit coupling, which is very weak in lighter elements, and allows for much more exotic physics like topological phases and quantum effects."

"The fascinating thing about tellurene that differentiates it from other 2D materials is its unique crystalline structure and high melting temperature," said co-author Ajit Roy, materials scientist at the Air Force Research Laboratory at Wright-Patterson Air Force Base in Dayton, Ohio. "That enables us to expand the performance envelope of optoelectronics, thermoelectric and other thin film devices."

Co-author Priya Vashishta, a professor of materials science at the University of Southern California, Los Angeles, said the research exemplifies how experiment and theory complement each other, a cornerstone of USC's Materials Genome Innovation for Computational Software center, supported by the Department of Energy Office of Science's Basic Energy Sciences.

University of Southern California postdoctoral researcher Aravind Krishnamoorthy is a co-lead author of the paper. Co-authors are postdoctoral researcher Sadegh Yazdi of Rice; Rice alumni Vidya Kochat of the Indian Institute of Science, Bengaluru, Chandra Sekhar Tiwary, an assistant professor at the Indian Institute of Technology, Kharagpur, and Emilie Ringe, a university lecturer at the University of Cambridge, England; Nicholas Glavin and Vikas Varshney of the Air Force Research Laboratory; and Hiroyuki Kumazoe, Fuyuki Shimojo, Rajiv Kalia and Aiichiro Nakano of the University of Southern California.

Ajayan is chair of Rice’s Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The research was supported by the Department of Energy Office of Science, Basic Energy Sciences; the National Science Foundation; the Air Force Research Laboratory and the Air Force Office of Scientific Research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Ajayan Research Group:

Rice Department of Materials Science and NanoEngineering:

George R. Brown School of Engineering:

Related News Press

News and information

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

2 Dimensional Materials

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Kanazawa University research: Opposite piezoresistant effects of rhenium disulfide in two principle directions June 13th, 2019

Thin films

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Possible Futures

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Optical computing/Photonic computing

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

Discoveries

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Materials/Metamaterials

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

NUS ‘smart’ textiles boost connectivity between wearable sensors by 1,000 times: Metamaterials are incorporated into conventional clothing to dramatically improve signal strength between electronic devices, allowing for new applications July 15th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

Announcements

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Resistance is utile: Magnetite nanowires with sharp insulating transition: Osaka University-led researchers make ultra-thin nanowires of Fe3O4, with a remarkable 'Verwey transition' from metal to insulator at low temperature -- a highly sought-after property for nanoelectronics July 19th, 2019

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

Military

Caught in the act: Images capture molecular motions in real time July 15th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

Energy

Breakthrough material could lead to cheaper, more widespread solar panels and electronics July 16th, 2019

Experiments show dramatic increase in solar cell output: Method for collecting two electrons from each photon could break through theoretical solar-cell efficiency limit July 5th, 2019

Black (nano)gold combat climate change July 5th, 2019

Researchers unveil how soft materials react to deformation at molecular level June 24th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tiny vibration-powered robots are the size of the world's smallest ant July 19th, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Russian scientists investigate new materials for Li-ion batteries of miniature sensors: Researchers are developing new materials for solid-state thin-film Li-ion batteries for micro and nanodevices May 31st, 2019

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Limitation exposed in promising quantum computing material: Metallic surfaces no longer protected as topological insulators become thinner July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

Nanotechnology pioneer Chad Mirkin wins Kabiller Prize in Nanoscience and Nanomedicine: Molly Stevens of Imperial College London receives Kabiller Young Investigator Award July 11th, 2019

Photonics/Optics/Lasers

Electronic chip mimics the brain to make memories in a flash: Engineers have mimicked the human brain with an electronic chip that uses light to create and modify memories. July 19th, 2019

What happens when you explode a chemical bond? Attosecond laser technique yields movies of chemical bond dissociation July 12th, 2019

Strange warping geometry helps to push scientific boundaries July 12th, 2019

A new way of making complex structures in thin films: Self-assembling materials can form patterns that might be useful in optical devices July 5th, 2019

Research partnerships

A graphene superconductor that plays more than one tune: Researchers at Berkeley Lab have developed a tiny toolkit for scientists to study exotic quantum physics July 19th, 2019

The interlayers help perovskite crystallisation for high-performance light-emitting diodes: Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes July 19th, 2019

The best of both worlds: how to solve real problems on modern quantum computers July 12th, 2019

Sheaths drive powerful new artificial muscles July 11th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project