Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer

An illustration shows how lithium metal anode developed at Rice University are protected from dendrite growth by a film of carbon nanotubes. (Credit: Tour Group/Rice University)
An illustration shows how lithium metal anode developed at Rice University are protected from dendrite growth by a film of carbon nanotubes. (Credit: Tour Group/Rice University)

Abstract:
Rice University scientists are counting on films of carbon nanotubes to make high-powered, fast-charging lithium metal batteries a logical replacement for common lithium-ion batteries.

Nanotubes may give the world better batteries: Rice U. scientists' method quenches lithium metal dendrites in batteries that charge faster, last longer

Houston, TX | Posted on October 25th, 2018

The Rice lab of chemist James Tour showed thin nanotube films effectively stop dendrites that grow naturally from unprotected lithium metal anodes in batteries. Over time, these tentacle-like dendrites can pierce the battery's electrolyte core and reach the cathode, causing the battery to fail.

That problem has both dampened the use of lithium metal in commercial applications and encouraged researchers worldwide to solve it.

Lithium metal charges much faster and holds about 10 times more energy by volume than the lithium-ion electrodes found in just about every electronic device, including cellphones and electric cars.

"One of the ways to slow dendrites in lithium-ion batteries is to limit how fast they charge," Tour said. "People don't like that. They want to be able to charge their batteries quickly."

The Rice team's answer, detailed in Advanced Materials, is simple, inexpensive and highly effective at stopping dendrite growth, Tour said.

"What we've done turns out to be really easy," he said. "You just coat a lithium metal foil with a multiwalled carbon nanotube film. The lithium dopes the nanotube film, which turns from black to red, and the film in turn diffuses the lithium ions."

"Physical contact with lithium metal reduces the nanotube film, but balances it by adding lithium ions," said Rice postdoctoral researcher Rodrigo Salvatierra, co-lead author of the paper with graduate student Gladys López-Silva. "The ions distribute themselves throughout the nanotube film."

When the battery is in use, the film discharges stored ions and the underlying lithium anode refills it, maintaining the film's ability to stop dendrite growth.

The tangled-nanotube film effectively quenched dendrites over 580 charge/discharge cycles of a test battery with a sulfurized-carbon cathode the lab developed in previous experiments. The researchers reported the full lithium metal cells retained 99.8 percent of their coulombic efficiency, the measure of how well electrons move within an electrochemical system.

Co-authors of the paper are Rice alumni Almaz Jalilov of the King Fahd University of Petroleum and Minerals, Saudi Arabia; Jongwon Yoon, a senior researcher at the Korea Basic Science Institute; and Gang Wu, an instructor, and Ah-Lim Tsai, a professor of hematology, both at the McGovern Medical School at the University of Texas Health Science Center at Houston. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The research was supported by the Air Force Office of Scientific Research, the National Institutes of Health, the National Council of Science and Technology, Mexico; the National Council for Scientific and Technological Development, Ministry of Science, Technology and Innovation and Coordination for the Improvement of Higher Education Personnel, Brazil; and Celgard, LLC.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for lots of race/class interaction and No. 2 for quality of life by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Tour Group:

Wiess School of Natural Sciences:

Related News Press

News and information

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Nanotubes/Buckyballs/Fullerenes/Nanorods

Straightforward biosynthesis of functional bulk nanocomposites February 5th, 2019

Drilling speed increased by 20% – yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chemical synthesis of nanotubes: Nanometer-sized tubes made from simple benzene molecules January 11th, 2019

'Smart skin' simplifies spotting strain in structures: Rice U. invention can use fluorescing carbon nanotubes to reveal stress in aircraft, structures November 15th, 2018

Discoveries

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Announcements

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

With nanopore sensing, VCU physics researchers detect subtle changes in single particles: The researchers' findings 'open the door to observe all kinds of interesting phenomenon on nanosurfaces,' an area of great interest to chemists February 21st, 2019

Platinum nanoparticles for selective treatment of liver cancer cells February 21st, 2019

What happens to magnetic nanoparticles once in cells? February 21st, 2019

High-speed surveillance in solar cells catches recombination red-handed: Researchers at Osaka University introduce a new time-resolved microscopy method that allows them to monitor the trajectories of fast-moving charged particles at unprecedented rates February 21st, 2019

Military

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Disruptive by Design: Nano Now February 1st, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Helping smartphones hold their charge longer February 6th, 2019

Current generation via quantum proton transfer February 1st, 2019

Static electricity could charge our electronics: While common in everyday life, the science behind this phenomenon is not well understood January 25th, 2019

Research partnerships

Synopsys and GLOBALFOUNDRIES Collaborate to Develop Industry’s First Automotive Grade 1 IP for 22FDX Process: Synopsys’ Portfolio of DesignWare Foundation, Analog, and Interface IP Accelerate ISO 26262 Qualification for ADAS, Powertrain, 5G, and Radar Automotive SoCs February 22nd, 2019

CEA-Leti & Stanford Target Edge-AI Apps with Breakthrough Memory Cell: Paper at ISSCC 2019 Presents Proof-of-Concept Multi-Bit Chip That Overcomes NVM’s Read/Write, Latency and Integration Challenges February 20th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project