Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers develop microbubble scrubber to destroy dangerous biofilms

Professor of chemical and biomolecular engineering Simon Rogers, left, postdoctoral researchers Jun Pong Park and Yongbeom Seo and professor of chemical and biomolecular engineering Hyunjoon Kong led an international team that developed hydrogen peroxide-bubbling microparticles that may help eradicate dangerous biofilms.

Photo by L. Brian Stauffer
Professor of chemical and biomolecular engineering Simon Rogers, left, postdoctoral researchers Jun Pong Park and Yongbeom Seo and professor of chemical and biomolecular engineering Hyunjoon Kong led an international team that developed hydrogen peroxide-bubbling microparticles that may help eradicate dangerous biofilms. Photo by L. Brian Stauffer

Abstract:
Stiff microbial films often coat medical devices, household items and infrastructure such as the inside of water supply pipes, and can lead to dangerous infections. Researchers have developed a system that harnesses the power of bubbles to propel tiny particles through the surfaces of these tough films and deliver an antiseptic deathblow to the microbes living inside.

Researchers develop microbubble scrubber to destroy dangerous biofilms

Champaign, IL | Posted on September 19th, 2018

Biofilms are slimy colonies of microbes held together by internal scaffolds, clinging to anything they touch. About 80 percent of all medical infections originate from biofilms that invade the inner workings of hospital devices and implants inside patients. Eradication is difficult because traditional disinfectants and antibiotics cannot effectively penetrate a biofilm’s tough surface, the researchers said.

In the journal Applied Materials and Interfaces, a team led by researchers at the University of Illinois at Urbana-Champaign describes how they used diatoms – the tiny skeletons of algae – loaded with an oxygen-generating chemical to destroy microbes.

“Most of us get those black or yellow spots in our showers at home,” said co-author Hyunjoon Kong, a professor of chemical and biomolecular engineering and a Carle Illinois College of Medicine affiliate. “Those spots are biofilms and most of us know it takes a lot of energy to scrub them away. Imagine trying to do this inside the confined space of the tubing of a medical device or implant. It would be very difficult.”

Looking to nature and basic mechanics for a solution, the researchers developed a system that uses naturally abundant diatoms along with hydrogen peroxide and tiny oxygen-generating sheets of the compound manganese oxide.

“We could have fabricated a particle using 3D printers, but luckily nature already provided us with a cheap and abundant option in diatoms,” said co-author and postdoctoral researcher Yongbeom Seo. “The species of diatom we selected are hollow, highly porous and rod-shaped, providing a lot of surface area for the bubbles to form and a channel for the bubbles to escape.”

The chemical reaction between the hydrogen peroxide and manganese oxide nanosheets takes place within the empty space inside the diatom. The result is a flourish of microbubbles that flow through the tiny channel, propelling the rigid diatoms forward with enough force to break up the surface and internal structure of the biofilms, the researchers said.

“We dope the particles with nanosheets of manganese oxide, then mix them with hydrogen peroxide and apply that to the surface of the biofilm,” Kong said. “Once the diatoms break through to the internal structure of the biofilm, they continue to expel bubbles and facilitate the entry of hydrogen peroxide, which is an effective disinfectant against bacteria and fungus.”

The researchers believe that their success is a result of a decision to focus on the mechanical aspects of biofilm destruction, not the chemical aspects of simply killing microbes.

“We have arrived at a mechanistic solution for this problem and the possibilities for this technology are endless,” said co-author Simon Rogers, a professor of chemical and biomolecular engineering. “We are discussing our research with clinicians who have many exciting ideas of how to use this system that we did not even think of originally, such as the removal of dental plaque.”

U. of I. researchers Jiayu Leong, Jun Dong Park, Yu-Tong Hong, Yu-Heng Deng, Vitaliy Dushnov and Joonghui Soh also contributed to this study. Additional co-authors include Sang-Hyon Chu of the National Institute of Aerospace, Cheol Park of the NASA Langley Research Center, Dong Hyun Kim of the Korea Institute of Industrial Technology and Yi Yan-Yang of the Institute of Bioengineering and Nanotechnology in Singapore.

The National Institutes of Health, the National Science Foundation and the Korea Institute of Industrial Technology supported this research.

####

For more information, please click here

Contacts:
LOIS YOKSOULIAN
PHYSICAL SCIENCES EDITOR
217-244-2788


Hyunjoon Kong
217-333-1178

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper “Diatom microbubbler for active biofilm removal in confined spaces” is available online and from the U. of I. News Bureau. DOI: 10.1021/acsami.8b08643:

Related News Press

News and information

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Videos/Movies

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Extracting energy from a 60 nanometers thin layer October 5th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Govt.-Legislation/Regulation/Funding/Policy

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Possible Futures

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Nanomedicine

Arrowhead Pharmaceuticals Hosts R&D Day on Pipeline of RNAi Therapeutics October 17th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Nanobiotechnology

Arrowhead Pharmaceuticals Hosts R&D Day on Pipeline of RNAi Therapeutics October 17th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Research partnerships

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project