Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene nanotubes outperform ammonium salts and carbon black in PU applications

Abstract:
Graphene nanotubes have demonstrated their ability to impart permanent and homogeneous anti-static properties to polyurethane (PU) materials, overcoming previous difficulties with nanotube dispersion in PU systems. The recently developed nanotube-based concentrate TUBALL MATRIX 202 has already built up a solid track record in applications such as industrial rollers and castors, PU shoes, printing rollers and cleaning pigs.

Graphene nanotubes outperform ammonium salts and carbon black in PU applications

Luxembourg | Posted on September 11th, 2018

OCSiAl’s TUBALL graphene nanotubes are rapidly gaining ground in customer-oriented applications with high-performance requirements. One remarkable example is PU discs in cleaning pigs for industrial pipelines. To avoid explosions and fires while also preventing static noise and improving diagnostic accuracy, manufacturers of cleaning pigs are replacing ammonium salts as an anti-static agent with TUBALL MATRIX 202. In addition to a permanent and stable resistivity level of 10^7–10^5 Ω·cm, the preliminary results have shown a 30% reduction in the rate of equipment failure.



Another specific application of TUBALL MATRIX 202 is anti-static shoes, where the PU elastomer material used in the outsole and midsole allows the shoes to be used in various static-sensitive facilities in the chemistry, oil and gas, electronics and mining industries. These nanotubes have also been well received by industrial roller manufacturers, as PU printing rollers can now be produced with a permanent volume resistivity level of 10^8–10^6 Ω·cm without dust formation at the facility and while preserving the essential mechanical performance characteristics such as abrasion resistance and hardness. TUBALL MATRIX 202 is also gaining ground in rollers and castors used in the mining industry, where anti-static properties are critical for safety reasons. According to data supplied by one of OCSiAl’s customers, graphene nanotubes preserve or even improve mechanical properties of the system, whereas previously the 6.5 wt.% of carbon black that had been used for anti-static purposes led to a nearly two-fold reduction in tear strength.



The TUBALL MATRIX 202 concentrate carrier is a plasticiser based on fatty carboxylic acid ester derivatives. To obtain a resistivity level of 10^9–10^5 Ω·cm, the working dosage range of graphene nanotubes is 100 times less than the working dosage of ammonium salts, 500 times less than that of carbon black, and 1000 times less than that of conductive mica. In comparison with ammonium salts, graphene nanotubes enable a wider range of resistivity levels that are totally independent of humidity and temperature conditions, and these nanotubes’ superiority over carbon black is rooted in their easy dispersion and the preserved mechanical properties of the system.

####

For more information, please click here

Contacts:
Anastasia Zirka
PR & Advertising manager
OCSiAl Group
+7 913 989 9239

Copyright © OCSiAl Group

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Graphene/ Graphite

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

Mining/Extraction/Drilling

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

UQ research accelerates next-generation ultra-precise sensing technology June 10th, 2016

Nanotubes/Buckyballs/Fullerenes/Nanorods

Making graphene-based desalination membranes less prone to defects, better at separating June 13th, 2019

Shaking hands with human or robot? Nanotubes make them alike as never before June 6th, 2019

Generating high-quality single photons for quantum computing: New dual-cavity design emits more single photons that can carry quantum information at room temperature May 17th, 2019

Self-powered wearable tech May 8th, 2019

Announcements

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Industrial

Building next gen smart materials with the power of sound May 28th, 2019

New surface treatment could improve refrigeration efficiency: A slippery surface for liquids with very low surface tension promotes droplet formation, facilitating heat transfer May 17th, 2019

Better microring sensors for optical applications May 10th, 2019

Ensure Safety and Keep Costs Down: Solving Industrial Challenges with Nanotube-Containing Polyurethane Shafts April 26th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project