Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Cannibalistic materials feed on themselves to grow new nanostructures

After a monolayer MXene is heated, functional groups are removed from both surfaces. Titanium and carbon atoms migrate from one area to both surfaces, creating a pore and forming new structures.

CREDIT
Oak Ridge National Laboratory, US Dept. of Energy; image by Xiahan Sang and Andy Sproles.
After a monolayer MXene is heated, functional groups are removed from both surfaces. Titanium and carbon atoms migrate from one area to both surfaces, creating a pore and forming new structures. CREDIT Oak Ridge National Laboratory, US Dept. of Energy; image by Xiahan Sang and Andy Sproles.

Abstract:
Scientists at the Department of Energy's Oak Ridge National Laboratory induced a two-dimensional material to cannibalize itself for atomic "building blocks" from which stable structures formed.

Cannibalistic materials feed on themselves to grow new nanostructures

Oak Ridge, TN | Posted on September 1st, 2018

The findings, reported in Nature Communications, provide insights that may improve design of 2D materials for fast-charging energy-storage and electronic devices.

"Under our experimental conditions, titanium and carbon atoms can spontaneously form an atomically thin layer of 2D transition-metal carbide, which was never observed before," said Xiahan Sang of ORNL.

He and ORNL's Raymond Unocic led a team that performed in situ experiments using state-of-the-art scanning transmission electron microscopy (STEM), combined with theory-based simulations, to reveal the mechanism's atomistic details.

"This study is about determining the atomic-level mechanisms and kinetics that are responsible for forming new structures of a 2D transition-metal carbide such that new synthesis methods can be realized for this class of materials," Unocic added.

The starting material was a 2D ceramic called a MXene (pronounced "max een"). Unlike most ceramics, MXenes are good electrical conductors because they are made from alternating atomic layers of carbon or nitrogen sandwiched within transition metals like titanium.

The research was a project of the Fluid Interface Reactions, Structures and Transport (FIRST) Center, a DOE Energy Frontier Research Center that explores fluid-solid interface reactions that have consequences for energy transport in everyday applications. Scientists conducted experiments to synthesize and characterize advanced materials and performed theory and simulation work to explain observed structural and functional properties of the materials. New knowledge from FIRST projects provides guideposts for future studies.

The high-quality material used in these experiments was synthesized by Drexel University scientists, in the form of five-ply single-crystal monolayer flakes of MXene. The flakes were taken from a parent crystal called "MAX," which contains a transition metal denoted by "M"; an element such as aluminum or silicon, denoted by "A"; and either a carbon or nitrogen atom, denoted by "X." The researchers used an acidic solution to etch out the monoatomic aluminum layers, exfoliate the material and delaminate it into individual monolayers of a titanium carbide MXene (Ti3C2).

The ORNL scientists suspended a large MXene flake on a heating chip with holes drilled in it so no support material, or substrate, interfered with the flake. Under vacuum, the suspended flake was exposed to heat and irradiated with an electron beam to clean the MXene surface and fully expose the layer of titanium atoms.

MXenes are typically inert because their surfaces are covered with protective functional groups--oxygen, hydrogen and fluorine atoms that remain after acid exfoliation. After protective groups are removed, the remaining material activates. Atomic-scale defects--"vacancies" created when titanium atoms are removed during etching--are exposed on the outer ply of the monolayer. "These atomic vacancies are good initiation sites," Sang said. "It's favorable for titanium and carbon atoms to move from defective sites to the surface." In an area with a defect, a pore may form when atoms migrate.

"Once those functional groups are gone, now you're left with a bare titanium layer (and underneath, alternating carbon, titanium, carbon, titanium) that's free to reconstruct and form new structures on top of existing structures," Sang said.

High-resolution STEM imaging proved that atoms moved from one part of the material to another to build structures. Because the material feeds on itself, the growth mechanism is cannibalistic.

"The growth mechanism is completely supported by density functional theory and reactive molecular dynamics simulations, thus opening up future possibilities to use these theory tools to determine the experimental parameters required for synthesizing specific defect structures," said Adri van Duin of Penn State.

Most of the time, only one additional layer [of carbon and titanium] grew on a surface. The material changed as atoms built new layers. Ti3C2 turned into Ti4C3, for example.

"These materials are efficient at ionic transport, which lends itself well to battery and supercapacitor applications," Unocic said. "How does ionic transport change when we add more layers to nanometer-thin MXene sheets?" This question may spur future studies.

"Because MXenes containing molybdenum, niobium, vanadium, tantalum, hafnium, chromium and other metals are available, there are opportunities to make a variety of new structures containing more than three or four metal atoms in cross-section (the current limit for MXenes produced from MAX phases)," Yury Gogotsi of Drexel University added. "Those materials may show different useful properties and create an array of 2D building blocks for advancing technology."

At ORNL's Center for Nanophase Materials Sciences (CNMS), Yu Xie, Weiwei Sun and Paul Kent performed first-principles theory calculations to explain why these materials grew layer by layer instead of forming alternate structures, such as squares. Xufan Li and Kai Xiao helped understand the growth mechanism, which minimizes surface energy to stabilize atomic configurations. Penn State scientists conducted large-scale dynamical reactive force field simulations showing how atoms rearranged on surfaces, confirming defect structures and their evolution as observed in experiments.

The researchers hope the new knowledge will help others grow advanced materials and generate useful nanoscale structures.

###

Research was supported as part of the FIRST Center, an Energy Frontier Research Center funded by the U.S. Department of Energy Office of Science. In situ aberration-corrected STEM imaging was conducted at CNMS, a U.S. Department of Energy Office of Science User Facility at ORNL. The research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility at Lawrence Berkeley National Laboratory.

####

About Oak Ridge National Laboratory
UT-Battelle manages ORNL for DOE's Office of Science. The single largest supporter of basic research in the physical sciences in the United States, the Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit https://science.energy.gov/. --by Dawn Levy

For more information, please click here

Contacts:
Dawn Levy

865-576-6448

Copyright © Oak Ridge National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The title of the paper is "In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides.":

Related News Press

News and information

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

2 Dimensional Materials

Scientists image conducting edges in a promising 2-D material February 8th, 2019

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Shelley Claridge, an assistant professor at Purdue University, is leading research to improve electronic and energy conversion devices. (Image by Vincent Walter) January 24th, 2019

Laboratories

Helping smartphones hold their charge longer February 6th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Govt.-Legislation/Regulation/Funding/Policy

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Sensitive sensor detects Down syndrome DNA February 14th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Possible Futures

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Chip Technology

NRL, AFRL develop direct-write quantum calligraphy in monolayer semiconductors February 15th, 2019

Molecular Lego blocks: Chemical data mining boosts search for new organic semiconductors February 15th, 2019

Spintronics by 'straintronics': Switching superferromagnetism with electric-field induced strain February 15th, 2019

Picosunís ALD encapsulation prevents electronics degradation February 15th, 2019

Nanoelectronics

Large, stable pieces of graphene produced with unique edge pattern: Breakthrough in graphene research February 1st, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Study on low noise, high-performance transistors may bring innovations in electronics December 28th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Discoveries

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

The smallest skeletons in the marine world observed in 3D by synchrotron techniques February 15th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Materials/Metamaterials

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Sound and light trapped by disorder February 8th, 2019

Announcements

Bosch Sensortec launches ideation community to foster and accelerate innovative IoT applications : Creativity hub for customers, partners, developers and makers February 18th, 2019

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Tracking pollen with quantum dots: A pollination biologist from Stellenbosch University in South Africa is using quantum dots to track the fate of individual pollen grains. This is breaking new ground in a field of research that has been hampered by the lack of a universal method February 17th, 2019

Super-light, super-insulating ceramic aerogel keeps the hottest temperatures at bay February 17th, 2019

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Researchers create ultra-lightweight ceramic material that withstands extreme temperatures: UCLA-led team develops highly durable aerogel that could ultimately be an upgrade for insulation on spacecraft February 15th, 2019

Helping smartphones hold their charge longer February 6th, 2019

Current generation via quantum proton transfer February 1st, 2019

Static electricity could charge our electronics: While common in everyday life, the science behind this phenomenon is not well understood January 25th, 2019

Research partnerships

Exotic spiraling electrons discovered by physicists: Rutgers-led research could lead to advances in lighting and solar cells February 18th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

Using artificial intelligence to engineer materials' properties: New system of 'strain engineering' can change a material's optical, electrical, and thermal properties February 11th, 2019

Scientists image conducting edges in a promising 2-D material February 8th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project