Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flipping the switch on supramolecular electronics

This is a photo-switchable molecular crystals in two dimensions.

CREDIT
Nature Publishing Group
This is a photo-switchable molecular crystals in two dimensions. CREDIT Nature Publishing Group

Abstract:
•Partners of the European Project 'Graphene Flagship' at the University of Strasbourg and CNRS (France), together with an international team of collaborators, created new 'switches' that respond to light.

•Researchers combined light-sensitive molecules with layers graphene and other 2D materials to create new devices that could be used in sensors, optoelectronics and flexible devices.

•The study, recently published in Nature Communications, may lead to a variety of programmable applications in the next generations of smart electronics.

Flipping the switch on supramolecular electronics

Cambridge, UK | Posted on August 14th, 2018

Graphene and related materials hold great potential for technological applications such as electronics, sensors, and energy storage devices, among others. Thanks to their high surface sensitivity, these materials are an ideal platform to study the interplay between molecular assemblies at the nanoscale and macroscopic electrical phenomena.

Researchers within the Graphene Flagship designed a molecule that can reversibly undergo chemical transformations when illuminated with ultraviolet and visible light. This molecule -a photoswitchable spiropyran- can be then anchored to the surface of materials such as graphene or molybdenum disulfide, thus generating an atomically precise hybrid macroscopic superlattice. When illuminated, the whole supramolecular structure experiences a collective structural rearrangement, which could be directly visualized with a sub-nanometer resolution by scanning tunneling microscopy.

More importantly, this light-induced reorganization at the molecular level induces large changes in the macroscopic electrical properties of the hybrid devices. The molecules, together with the layers of graphene and related materials, can convert single-molecule events into a spatially homogeneous switching action that generates a macroscopic electrical response. This novel and versatile approach takes supramolecular electronics to the next level.

'Thanks to this new approach, we can exploit the capacity of collective switching events occurring in superlattices of photochromic molecules assembled onto graphene and related materials to induce large scale and reversible modulation in the electrical properties of high-performance opto-electronic devices,' explains Paolo Samorì, lead author of the paper. 'This technology could find applications in the next generation of smart and portable electronics, with programmable properties,' he adds.

Samorì also explains how this idea of tailoring molecular superlattices could generate a wide variety of new materials with tunable and responsive properties. 'To dial your functions! You only need to carefully choose the right molecules, the thus-formed superlattice will allow to maximize the change in properties as a response to external inputs,' he says.

Vittorio Pellegrini, researcher at IIT and Division Leader for Energy, Composites, and Production at the Graphene Flagship, highlights how the research is 'unique in the way it combines graphene and other related materials with light-responsive chemical molecules. These macroscopic arrangements are promising platforms for optoelectronics.' Pellegrini points out the outstanding potential of these new findings: 'the molecular ultra-thin coating can be tailored just by synthesizing different molecules.' Moreover, 'this discovery will lead us to the development of devices, as the technique developed by Samorì and his team can be scaled up in reproducible manner,' he added. Samorì agrees: 'The limit in the scalability is the accessibility to ultra-flat and atomically precise graphene and related materials.'

These advances, made possible by the collaborative environment of the Graphene Flagship, could lead to promising applications in sensors, optoelectronics, and flexible devices. Researchers now dream of high-performance multifunctional hybrid devices under control of nature's most abundant and powerful source of energy - light.

Professor Andrea C. Ferrari, Science and Technology Officer of the Graphene Flagship, and Chair of its management panel added: 'Supra-molecular chemistry has been part of the Flagship research since the very beginning. Over the years our partners have improved and developed the techniques that enable to interface molecules with graphene and related materials. We are now witnessing a steady progress towards applications, as shown by this interesting work.'

####

About Graphene Flagship
The Graphene Flagship is one of the largest research initiatives of the European Union. With a budget of €1 billion, it represents a new form of joint, coordinated research initiative on an unprecedented scale. The overall goal of the Graphene Flagship is to take graphene and related materials from the realm of academic laboratories into European society, facilitating economic growth and creating new jobs, in the space of ten years. Through a consortium that combines more than 150 partners, both academic and industrial, the research effort covers the entire value chain, from materials production to components and system integration, and targets several specific goals that exploit the unique properties of graphene and related materials.

For more information, please click here

Contacts:
Fernando Gomollon-Bel

44-012-237-62391

Copyright © Graphene Flagship

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Chemistry

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Graphene/ Graphite

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

A human enzyme can biodegrade graphene August 28th, 2018

2 Dimensional Materials

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project