Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3

A research team led by Dr. Zhian Ren from Institute of Physics, Chinese Academy of Sciences discovered a quasi-one-dimensional superconductor K2Mo3As3, with the Tc value exceeding 10 K for the first time. This newly synthesized K2Mo3As3 crystallizes in a noncentrosymmetric hexagonal structure containing of (Mo3As3)2? linear chains, with bulk superconductivity confirmed via physical property characterizations. This discovery provides new platforms to study the underlying unconventional superconducting mechanism within the low-dimensional crystal structures.

CREDIT
©Science China Press
A research team led by Dr. Zhian Ren from Institute of Physics, Chinese Academy of Sciences discovered a quasi-one-dimensional superconductor K2Mo3As3, with the Tc value exceeding 10 K for the first time. This newly synthesized K2Mo3As3 crystallizes in a noncentrosymmetric hexagonal structure containing of (Mo3As3)2? linear chains, with bulk superconductivity confirmed via physical property characterizations. This discovery provides new platforms to study the underlying unconventional superconducting mechanism within the low-dimensional crystal structures. CREDIT ©Science China Press

Abstract:
In the past century, superconductivity has been observed in thousands of substances with multifarious chemical compositions and crystal structures; however, researchers have still not found an explicit method for discovering new superconductors. For the unconventional high-Tc superconductors of cuprates and iron pnictides/chalcogenides, the occurrence of superconductivity is highly related to the existence of some certain quasi-two-dimensional structural motifs, e.g., the CuO2 planes or the Fe2As2/Fe2Se2 layers. Thus, low dimensionality has generally been considered as a favorable ingredient for exotic electron pairing due to the enhancement of electronic correlations. While among the quasi-one-dimensional (Q1D) compounds, only a few compounds were found to be superconducting at considerably low temperatures of several degrees Kelvin.

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3

Beijing, China | Posted on August 10th, 2018

Recently, a team led by Prof. Zhian Ren from the Institute of Physics, Chinese Academy of Sciences discovered a Q1D superconductor K2Mo3As3, with a Tc value exceeding 10 K for the first time. Although lots of molybdenum chalcogenide superconductors were discovered from the 1970's, ternary compounds of molybdenum arsenide have rarely been reported. After many efforts on studying Mo-based ternary phases, the team succeeded in synthesizing the new K2Mo3As3 compound, which crystalizes in a noncentrosymmetric hexagonal structure with typical Q1D (Mo3As3)2- linear chains separated by K+ cations, similar to the structure of K2Mo3As3. Bulk superconductivity below 10.4 K was confirmed by electrical resistivity, magnetic susceptibility, and heat capacity measurements. The K2Mo3As3 is the first MoAs-based superconductor and possesses the record Tc in all Q1D superconductors. This discovery indicates that Cr and Mo based Q1D superconductors may share some common underlying origins within the similar structural motifs and will help to uncover the exotic superconducting mechanism in low dimensional materials.

####

For more information, please click here

Contacts:
Zhian Ren

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

University of Aberdeen use the Deben CT5000 to observe compressive damage mechanisms in syntactic foam June 14th, 2019

Superconductivity

Perfect diamagnetism observation of high-temperature superconductivity in compressed H2S June 14th, 2019

UCI scientists create new class of two-dimensional materials: Fabrication could help unlock new quantum computing and energy technologies June 6th, 2019

Possible Futures

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Discoveries

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Announcements

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Hot spots' increase efficiency of solar desalination: Rice University engineers boost output of solar desalination system by 50% June 19th, 2019

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project