Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A molecular switch at the edge of graphene

Abstract:
Molecular electronics is a wonderful and exciting concept: imagine the ave-inspiring power of chemical synthesis combined with nanoelectronic circuits, the backbone of the information society!!!! Molecules that switch devices, or even *are* the devices. Unfortunately, molecules are very, very small and difficult (to say the least) to trap and control even with the finest nanolithography in existence. Methods to create molecular electronics exist, but are challenging. The hardest problem is to control how the molecules bind to the electrodes, because in nanotechnology, the details of the contacts have a massive impact on how a device works.

A molecular switch at the edge of graphene

Kgs. Lyngby, Denmark | Posted on July 27th, 2018

A team of italian, spanish and danish researchers have worked out a far simpler way to put molecules to work in electronic switches.

Jose Caridad, assistant professor at DTU Nanotech, recently discovered that edges of graphene - which are just 0.3 nm thick and a thousand times sharper than a razor blade - give water molecules a well-defined place to bind, while somehow allowing them to switch orientation (see illustration below) in response to an electrical field. These relatively few molecules (maybe about 10000) attached along the edge, control the resistance and capacitance of surprisingly large graphene devices (5 x 5 µm device is about 1 billion carbon atoms). The graphene devices were encapsulated - leaving just the edges exposed and accessible to the molecules.

The water molecules at the edge can be switched "up" or "down" with a gate electrode, similar to those used for MOSFETs in computer chips.
The molecules respond collectively to the external electric field. Not only that, they keep their alignment after the field has been removed, just like a toggle switch stay in position after flipped it. Not only that (!), they communicate with the charge carriers in the graphene, which the researchers saw as a persistent shift in the conductance and capacitance. The switching strength depend on how polar the molecules are, making water the best he tried so far.

José Caridad now wants to use this for sensors and memory devices, which are important for future internet of things and neuromorphic computing.

Peter Břggild, Prof. at DTU Nanotech, is excited: "The key thing is to control which atoms terminate the graphene edge, even before the water molecules arrive. If they are fluorine, nothing happens. If we replace them with oxygen, it comes to live. We can basically dial in a wide range of responses depending on which atom we put on the carbon atoms."

The experiments were backed up by theoretical calculations led by my colleague Prof. Mads Brandbyge, who worked with molecular electronics for many years: "We tried with polar molecules, and immediately we have a memory device. What about larger molecules, with special electronic properties? Can they switch orientation as well? The graphene edge is a perfect molecule trap, and there are so many interesting possibilities."

The work was done in collaboration with our great colleagues from Politecnico Milano, Universidade Do Minho and Universitŕ di Catania, and you can read more here: "A Graphene-Edge Ferroelectric Molecular Switch" in Nano Letters.

####

For more information, please click here

Contacts:
Peter Břggild
Address: DTU Nanotech, Technical University of Denmark, Building 345C
City: Kgs. Lyngby
State:
Zip: 2800
Country: Denmark
Phone: 21362798

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Graphene/ Graphite

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

These small caps are tapping a graphene market that has more than doubled in a year December 1st, 2018

Possible Futures

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Molecular Nanotechnology

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Insights into magnetic bacteria may guide research into medical nanorobots December 12th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

Chip Technology

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Harnessing the power of 'spin orbit' coupling in silicon: Scaling up quantum computation December 7th, 2018

Memory Technology

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

CEA-Leti’s RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Sensors

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

CEA-Leti Extends 300mm Line and Adds Avenues for Developing Disruptive Technologies: Execution Relies on CEA-Leti’s Fully Implemented Technology With Module-Level Innovations & Devices and Their Architectures December 3rd, 2018

Nanoelectronics

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Machine learning helps improving photonic applications September 28th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Discoveries

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Announcements

Quantum chemical calculations on quantum computers: A quantum algorithm capable of performing quantum circuits parallelism and full configuration interactions calculations in any open shell molecules without exponential/combinatorial explosion December 17th, 2018

The feature size and functional range of molecular electronic devices: Monitoring the transition from tunneling leakage current to molecular tunneling December 16th, 2018

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Research partnerships

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Three CEA Projects Awarded European Research Council Synergy Grants November 26th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project