Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > A molecular switch at the edge of graphene

Abstract:
Molecular electronics is a wonderful and exciting concept: imagine the ave-inspiring power of chemical synthesis combined with nanoelectronic circuits, the backbone of the information society!!!! Molecules that switch devices, or even *are* the devices. Unfortunately, molecules are very, very small and difficult (to say the least) to trap and control even with the finest nanolithography in existence. Methods to create molecular electronics exist, but are challenging. The hardest problem is to control how the molecules bind to the electrodes, because in nanotechnology, the details of the contacts have a massive impact on how a device works.

A molecular switch at the edge of graphene

Kgs. Lyngby, Denmark | Posted on July 27th, 2018

A team of italian, spanish and danish researchers have worked out a far simpler way to put molecules to work in electronic switches.

Jose Caridad, assistant professor at DTU Nanotech, recently discovered that edges of graphene - which are just 0.3 nm thick and a thousand times sharper than a razor blade - give water molecules a well-defined place to bind, while somehow allowing them to switch orientation (see illustration below) in response to an electrical field. These relatively few molecules (maybe about 10000) attached along the edge, control the resistance and capacitance of surprisingly large graphene devices (5 x 5 µm device is about 1 billion carbon atoms). The graphene devices were encapsulated - leaving just the edges exposed and accessible to the molecules.

The water molecules at the edge can be switched "up" or "down" with a gate electrode, similar to those used for MOSFETs in computer chips.
The molecules respond collectively to the external electric field. Not only that, they keep their alignment after the field has been removed, just like a toggle switch stay in position after flipped it. Not only that (!), they communicate with the charge carriers in the graphene, which the researchers saw as a persistent shift in the conductance and capacitance. The switching strength depend on how polar the molecules are, making water the best he tried so far.

José Caridad now wants to use this for sensors and memory devices, which are important for future internet of things and neuromorphic computing.

Peter Bøggild, Prof. at DTU Nanotech, is excited: "The key thing is to control which atoms terminate the graphene edge, even before the water molecules arrive. If they are fluorine, nothing happens. If we replace them with oxygen, it comes to live. We can basically dial in a wide range of responses depending on which atom we put on the carbon atoms."

The experiments were backed up by theoretical calculations led by my colleague Prof. Mads Brandbyge, who worked with molecular electronics for many years: "We tried with polar molecules, and immediately we have a memory device. What about larger molecules, with special electronic properties? Can they switch orientation as well? The graphene edge is a perfect molecule trap, and there are so many interesting possibilities."

The work was done in collaboration with our great colleagues from Politecnico Milano, Universidade Do Minho and Università di Catania, and you can read more here: "A Graphene-Edge Ferroelectric Molecular Switch" in Nano Letters.

####

For more information, please click here

Contacts:
Peter Bøggild
Address: DTU Nanotech, Technical University of Denmark, Building 345C
City: Kgs. Lyngby
State:
Zip: 2800
Country: Denmark
Phone: 21362798

Copyright © Technical University of Denmark

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Related News Press

News and information

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Graphene/ Graphite

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

EXPLORES NEXT-GEN GRAPHENE NANOTUBE PRODUCTS October 2nd, 2018

Possible Futures

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Molecular Nanotechnology

How swarms of nanomachines could improve the efficiency of any machine September 28th, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Measuring the nanoworld September 4th, 2018

All wired up: New molecular wires for single-molecule electronic devices August 31st, 2018

Chip Technology

Nanometrics to Announce Third Quarter Financial Results on October 30, 2018 October 10th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Machine learning helps improving photonic applications September 28th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Sensors

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

Nanoelectronics

Machine learning helps improving photonic applications September 28th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Research partnerships

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project