Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

Top: Schematic representations of the face-sharing unit in rhombohedral BaRuO3 and corner-sharing unit in tetragonal RuO2, cubic SrRuO3, and orthorhombic CaRuO3. Bottom: Scanning electron microscope (SEM) image of BaRuO3.
CREDIT
Keigo Kamata
Top: Schematic representations of the face-sharing unit in rhombohedral BaRuO3 and corner-sharing unit in tetragonal RuO2, cubic SrRuO3, and orthorhombic CaRuO3. Bottom: Scanning electron microscope (SEM) image of BaRuO3. CREDIT Keigo Kamata

Abstract:
Researchers at Tokyo Institute of Technology have developed a ruthenium-based perovskite catalyst[1] that shows strong activity even at low temperatures (down to 313 K). The reusable catalyst does not require additives, meaning that it can prevent the formation of toxic by-products. The oxidation of sulfides is a commercially important process with broad applications ranging from chemicals production to environmental management.

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

Tokyo, Japan | Posted on July 13th, 2018

A research group led by Keigo Kamata and Michikazu Hara of Tokyo Institute of Technology (Tokyo Tech) has succeeded in developing a barium ruthenate (BaRuO3) perovskite -- the first catalyst of its kind shown to be capable of the selective oxidation of sulfides under mild conditions, with molecular oxygen (O2) as the only oxidant and without the need for additives.

Reporting their findings in ACS Applied Materials & Interfaces, the researchers state that BaRuO3 has three advantages over conventional catalysts.

Firstly, it exhibits high performance even at 313 K, a temperature much lower than the 373-423 K range reported in previous systems including other ruthenium- and manganese-based catalysts. Secondly, its high rate of oxygen transfer indicates that it has many potential uses; for example, it is applicable to the oxidative desulfurization[2] of dibenzothiophene, which can produce a 99% yield of pure sulfone. Thirdly, the new catalyst is recyclable -- the present study showed that BaRuO3 could be reused at least three times without loss of performance.

The achievement overcomes several classic limitations, such as the need for additives, toxic reagents and high reaction temperatures to achieve good catalytic performance.

The catalyst has a rhombohedral structure (see Figure 1). While other ruthenium-based catalysts investigated to date such as SrRuO3, CaRuO3 and RuO2 can all be described as having corner-sharing octahedral units, BaRuO3 has face-sharing octahedra. This configuration is thought to be one of the main reasons behind the catalyst's higher oxygen transfer capability.

The way in which BaRuO3 was synthesized -- based on the sol-gel method[3] using malic acid -- was also important. The researchers say: "The catalytic activity and specific surface area of BaRuO3 synthesized by the malic acid-aided method were higher than those of BaRuO3 synthesized by the polymerized complex method."

The study highlights the importance of subtle changes in the nanoscale structure of perovskite catalysts, and could provide promising leads for further research on a wide range of perovskite-based functional materials.

###

Technical terms

[1] Perovskite catalyst: Referring to a family of catalysts with the general formula ABO3, which are of great interest due to their structural simplicity, flexibility, good stability and controllable physicochemical properties.

[2] Oxidative desulfurization: An important reaction process for sulfur removal -- this is particularly relevant to the fuel industry and efforts to curb sulfur emissions.

[3] Sol-gel method: A process widely used to prepare novel materials by converting monomers in a colloidal solution (sol) to a network of polymers (gel).

####

For more information, please click here

Contacts:
Emiko Kawaguchi

81-357-342-975

Copyright © Tokyo Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

A ruthenium-based catalyst with highly active, flat surfaces outperforms metal-based competitors:

Reusable ruthenium-based catalyst could be a game-changer for the biomass industry:

Related News Press

Chemistry

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Light makes Rice U. catalyst more effective: Halas lab details plasmonic effect that allows catalyst to work at lower energy October 5th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Perovskites

High-performance self-assembled catalyst for SOFC October 12th, 2018

Perovskite solar cells leap toward commercialization September 28th, 2018

Possible Futures

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Materials/Metamaterials

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

Unmasking corrosion to design better protective thin films for metals: Researchers from three universities team up to analyze oxide films at atomic level October 3rd, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

New-Contracts/Sales/Customers

Iranian Firm Offering Nano-Products on Chinese Market October 16th, 2018

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project