Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors

Discovery could lead to lighter, thinner displays for computers, smartphones and televisions.
Discovery could lead to lighter, thinner displays for computers, smartphones and televisions.

Abstract:
DNA is certainly the basis of life. Soon it might also be the basis of your electronic devices.

DNA drives design principles for lighter, thinner optical displays: Lighter gold nanoparticles could replace thicker, heavier layered polymers used in displays’ back-reflectors

Evanston, IL | Posted on June 27th, 2018

A Northwestern University team has developed a new set of design principles for making photonic crystals akin to the ones that are typically used in computer, television and smartphone displays. By using synthetic DNA to assemble particles into crystalline lattices, the researchers have opened the door for much lighter and thinner displays compared to what is currently available.

“Most people look at a laptop display every day, but few people understand what they are made of and why,” said George Schatz, Charles E. and Emma H. Morrison Professor of Chemistry in Northwestern’s Weinberg College of Arts and Sciences. “One component of the display is the back-reflector, a mirror-like device that directs the light emitted by the LCD to the viewer. These reflectors are made using layered polymers that are much thicker and heavier than our crystals.”

Northwestern’s approach not only replaces these polymers with gold nanocrystals but also spaces them apart to leave air among them. The result is a lighter, more compact, precisely designed and reconfigurable structure that is still highly reflective.

The research was published online yesterday in the Proceedings of the National Academy of Sciences (PNAS). Schatz and Chad Mirkin, the director of Northwestern’s International Institute for Nanotechnology and the George B. Rathmann Professor of Chemistry, served as the paper’s co-corresponding authors.

Although DNA is almost always associated with living organisms — from simple bacteria to complex humans — the DNA used in the study is chemically synthesized and manipulated rather than derived from living cells. In 1996, Mirkin invented ways to link synthetic DNA to gold nanoparticles to produce new materials not found in nature — to essentially use the “blueprint of life” to program their formation. These structures have become the basis for more than 1,800 globally used products, primarily in the life sciences.

Then, in 2008, Mirkin and Schatz collaborated to make crystals from particles linked by DNA. By attaching strands of synthetic DNA to tiny gold spheres, the duo found they could build three-dimensional crystalline structures. Changing the DNA strand’s sequence of Gs, As, Ts and Cs changes the shape of the crystalline structure, allowing the researchers to arrange the particles differently in space. More than 500 crystal types, spanning more than 30 different crystal symmetries have been made using this approach, making it a powerful and fundamentally new way to program the formation of crystalline matter.

Despite making sophisticated advances with this work since 2008, Mirkin and Schatz did not initially realize that the crystal lattices they made in the laboratory had optical properties similar to the polymer layers found in device displays.

“Through computer modeling, we realized by accident that the crystalline materials with gold nanoparticles had properties that we missed earlier in the work,” Schatz said. “We then optimized the optical properties using computations, and these demonstrated that the non-touching metal spheres could, in some cases, be better than the touching polymer spheres.”

After making the crystals in the laboratory, Mirkin’s and Schatz’s teams measured the crystals’ optical properties to find that their computational modeling was indeed correct. Although they only tested the crystalline lattice’s reflective nature in the current PNAS paper, the method could lead to many types of functional “designer” materials using DNA-driven self-assembly.

“The generality of the approach and the design rules are quite extraordinary and independent of particle composition,” Mirkin said. “This takes what we initially conceived in the 1990s to entirely new heights.”

The research was supported by the Air Force Office of Scientific Research (award number FA9550-17-1-0348), the Asian Office of Aerospace Research and Development (award number FA2386-13-1-4124), the U.S. Department of Energy (award number DE-SC0004752 and DE-SC0000989) and the National Science Foundation (award number CHE-1414466). Lin Sun, a Ph.D. student in Mirkin’s laboratory, served as the paper’s first author.

More news at Northwestern Now
Find experts on our Faculty Experts Hub
Follow @NUSources for expert perspectives

####

For more information, please click here

Contacts:
Amanda Morris
847-467-6790

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Display technology/LEDs/SS Lighting/OLEDs

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Organic Electronics

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Military

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

New chip opens door to AI computing at light speed February 16th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project