Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology

Abstract:
A work led by SISSA and published on Nature Nanotechnology reports for the first time experimentally the phenomenon of ion 'trapping' by graphene carpets and its effect on the communication between neurons. The researchers have observed an increase in the activity of nerve cells grown on a single layer of graphene. Combining theoretical and experimental approaches they have shown that the phenomenon is due to the ability of the material to 'trap' several ions present in the surrounding environment on its surface, modulating its composition. Graphene is the thinnest bi-dimensional material available today, characterised by incredible properties of conductivity, flexibility and transparency. Although there are great expectations for its applications in the biomedical field, only very few works have analysed its interactions with neuronal tissue.

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology

Trieste, Italy | Posted on June 13th, 2018

A study conducted by SISSA - Scuola Internazionale Superiore di Studi Avanzati, in association with the University of Antwerp (Belgium), the University of Trieste and the Institute of Science and Technology of Barcelona (Spain), has analysed the behaviour of neurons grown on a single layer of graphene, observing a strengthening in their activity. Through theoretical and experimental approaches the researchers have shown that such behaviour is due to reduced ion mobility, in particular of potassium, to the neuron-graphene interface. This phenomenon is commonly called 'ion trapping', already known at theoretical level, but observed experimentally for the first time only now. "It is as if graphene behaves as an ultra-thin magnet on whose surface some of the potassium ions present in the extra cellular solution between the cells and the graphene remain trapped. It is this small variation that determines the increase in neuronal excitability" comments Denis Scaini, researcher at SISSA who has led the research alongside Laura Ballerini.

The study has also shown that this strengthening occurs when the graphene itself is supported by an insulator, like glass, or suspended in solution, while it disappears when lying on a conductor. "Graphene is a highly conductive material which could potentially be used to coat any surface. Understanding how its behaviour varies according to the substratum on which it is laid is essential for its future applications, above all in the neurological field" continues Scaini, "considering the unique properties of graphene it is natural to think for example about the development of innovative electrodes of cerebral stimulation or visual devices".

It is a study with a double outcome. Laura Ballerini comments as follows: "This 'ion trap' effect was described only in theory. Studying the impact of the 'technology of materials' on biological systems, we have documented a mechanism to regulate membrane excitability, but at the same time we have also experimentally described a property of the material through the biology of neurons."

###

The work has been carried out within the Graphene Flagship supported by the European Union.

####

For more information, please click here

Contacts:
Chiara Saviane - SISSA

0039-333-767-5962

Copyright © SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Quantum sensing method measures minuscule magnetic fields: MIT researchers find a new way to make nanoscale measurements of fields in more than one dimension March 15th, 2019

Graphene/ Graphite

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

The moiré patterns of three layers change the electronic properties of graphene March 8th, 2019

Zips on the nanoscale: New method of synthesising nanographene on metal oxide surfaces March 5th, 2019

Brain-Computer Interfaces

Leti and Taiwanese National Applied Research Laboratories Announce Collaboration for Microelectronics Innovation: Collaboration Will Facilitate Scientific and Technological Exchanges in Microelectronics, Sharing Platforms and Encouraging PhD Student Exchanges October 23rd, 2018

Are We Quantum Computers? Led by UCSB’s Matthew Fisher, an international collaboration of researchers will investigate the brain’s potential for quantum computation March 27th, 2018

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging February 13th, 2018

A firefly's flash inspires new nanolaser light July 18th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Researchers reverse the flow of time on IBM's quantum computer March 14th, 2019

When semiconductors stick together, materials go quantum: A new study led by Berkeley Lab reveals how aligned layers of atomically thin semiconductors can yield an exotic new quantum material March 12th, 2019

Possible Futures

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Exotic “second sound” phenomenon observed in pencil lead: At relatively balmy temperatures, heat behaves like sound when moving through graphite, study reports March 15th, 2019

Nanomedicine

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

New optical imaging system could be deployed to find tiny tumors: Near-infrared technology pinpoints fluorescent probes deep within living tissue; may be used to detect cancer earlier March 8th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

Discoveries

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Announcements

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

CEA-Leti Announces Prototype of Next-generation Photo-Acoustic Sensors for Gas Detection: REDFINCH Team Achieves These Capabilities in Mid-infrared Region, Where Many Important Chemical and Biological Species Have Strong Absorption Fingerprints March 21st, 2019

Fish-Inspired Material Changes Color Using Nanocolumns March 18th, 2019

New method to reduce uranium concentration in contaminated water March 18th, 2019

Nanobiotechnology

Gold nanoparticles to facilitate in-situ detection of amplified DNA at room temperature March 21st, 2019

Arrowhead Pharmaceuticals Begins Dosing in Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia March 11th, 2019

Computer-designed vaccine elicits potent antibodies against RSV: The nanoparticle platform for this respiratory syncytial virus study will be applied to vaccine research on flu, HIV, and more; Seattle startup Icosavax will advance related clinical trials March 8th, 2019

Nanotechnology Gives Mice Night Vision—Are Humans Next? March 2nd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project