Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Density gradient ultracentrifugation for colloidal nanostructures separation and investigation

Abstract:
Density gradient ultracentrifugation (DGUC), as an effective method for the purification of nanomaterials, has attracted tremendou attentions of researchers. A recent review was reported by Science Bulletin, entitled "Density gradient ultracentrifugation for colloidal nanostructures separation and investigation" by Xiaoming Sun and Liang Luo et al from Beijing University of Chemical Technology. The authors systemtatically introduce the classification, mechanism and applications of density gradient ultracentrifugation (DGUC) with various separation examples, demonstrating the versatility of such an efficient separation technique.

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation

Beijing, China | Posted on June 5th, 2018

Monodispersed nanoparticles and their assemblies have been demonstrated great application potentials due to their unique optical, electrical, magnetic and catalytic properties. During the last two decades, as the rapid development of nanomaterials, great progress of the synthetic methods of various monodispersed nanoparticles including semiconductors, metals and oxides have been made, and many assemblies based on single component or multicomponents have also been fabricated and demonstrated their unique functions. However, the synthetic repeatbility of monodispersed nanomaterials always remains a main limit of large-scale fabrications and applications. Further, rational design and synthesis of doped nanostructures with complicated components or complex structures such as core/shell structures, assymmetric structures, have become new issues in chemistry and material science, mainly due to the uncertain repeatibility. On the contrary, the separation methods for nanomaterial remain far behind. Typical methods such as membrane filtration, electrophoresis and magnetic field, also have many restraints and limited separation effect, which hinder the practical applications of nanodevices in various fields.

Aiming to solve the above issues, the DGUC technique, which was used to sort marcomolecules in biological field, has recently been demonstrated as an efficient way of sorting colloidal nanoparticles by several groups including Hersam's group and Sun's group. The DGUC can realize the separation of nanoparticles according to their differences in chemistry, structure, size and/or morphology. The authors introduced the classification, mechanism, applicability and instructions of DGUC, and demonstrated the applications including separation, purification and ultraconcentration of nanoparticles by DGUC, verifying the versatility. They further developed a new method "lab in a tube", which is helpful to monitor and get deeper insights of synthetic mechanism, in situ surface reactions and assembly processes.

###

This work was supported by the National Natural Science Foundation of China (NSFC), the National Key Research and Development Project of China (2016YFF0204402), the Program for Changjiang Scholars and Innovative Research Team in the University (IRT1205).

####

For more information, please click here

Contacts:
SUN Xiaoming

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article: Pengsong Li, Anuj Kumar, Jun Ma, Yun Kuang, Liang Luo, Xiaoming Sun. Density gradient ultracentrifugation for colloidal nanostructures separation and investigation. Science Bulletin, 2018, 63(10): 645-662:

Related News Press

News and information

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Chemistry

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Fueling the World Sustainably: Synthesizing Ammonia using Less Energy April 26th, 2020

Maryland engineers open door to big new library of tiny nanoparticles: A new study expands the landscape of nanomaterials -- and what we can do with them April 24th, 2020

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification April 16th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Possible Futures

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Discoveries

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Materials/Metamaterials

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Announcements

NUS researchers develop stretchable, self-healing and illuminating material for ‘invincible’ light-emitting devices: Promising applications include damage-proof flexible display screens and illuminating electronic skin for autonomous soft robots May 31st, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

Researchers develop experimental rapid COVID-19 test using nanoparticle technique: Advanced nanotechnology provides 'naked eye' visual detection of virus in 10 minutes May 29th, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Argonne researchers create active material out of microscopic spinning particles May 29th, 2020

Configurable circuit technology poised to expand silicon photonic applications: Chips can be programmed after fabrication for use in communication, computing or biomedical applications May 29th, 2020

The concept of creating «brain-on-chip» revealed: A team of scientists is working to create brain-like memristive systems providing the highest degree of adaptability for implementing compact and efficient neural interfaces, new-generation robotics, artificial intelligence, perso May 29th, 2020

SUTD developed a simple method to print planar microstructures of polysiloxane: The new method, embedded ink writing (EIW), enables direct writing of polysiloxane which helps in the fabrication of microfluidic devices, flexible wearables, and soft actuators May 29th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project