Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level

In a one-dimensional periodic potential, represented here by a Toblerone bar, there is no flow of electrons (represented by Gummy bears) when two of them occupy a hollow space. The research made it possible to observe similar behaviour with ultra-cold lithium-6 atoms.
CREDIT
© ETH Zurich
In a one-dimensional periodic potential, represented here by a Toblerone bar, there is no flow of electrons (represented by Gummy bears) when two of them occupy a hollow space. The research made it possible to observe similar behaviour with ultra-cold lithium-6 atoms. CREDIT © ETH Zurich

Abstract:
Predicting the behaviour of electrons in a material is not easily done. Physicists from the University of Geneva (UNIGE), ETH Zurich and EPFL replaced the electrons with ultra-cold neutral lithium atoms that they had circulated in a one-dimensional quantum tube. The scientists were then able to confirm an unusual state of matter that retains its insulation regardless of the level of attraction between the particles. This work, published in PRX, opens the way to the search for new materials with atypical properties.

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level

Geneva, Switzerland | Posted on April 16th, 2018

The fact that a material is a metal or an insulator depends on a series of microscopic details, such as the strength of the interactions between electrons; the presence of impurities or obstacles; or the number of dimensions through which the charge carriers can propagate. This high degree of complexity means that predicting the electronic properties of a given material is a hard task. Even if we know perfectly how to model the trajectory of a particle in a vacuum, we struggle to do the same thing in a material (a crystal for example), where the electrons circulate between the nuclei of positively-charged atoms. The latter generate a periodic potential, much like a series of peaks that affect the motion of the electrons, thereby complicating predictions. Will the material be a metal? An insulator? Or a semiconductor? It will all depend on two parameters: the strength of the interaction between the electrons and the strength of the periodic potential. The answer to these questions was found in the ongoing discussions and debates between a group of theorists, led by Thierry Giamarchi, professor in the Department of Quantum Matter Physics (physics section) in UNIGE's Faculty of Sciences, and the experimental groups based in Zurich and Lausanne, led by Martin Lebrat, from the group headed by Professor Tilman Esslinger at ETH Zurich's Institute for Quantum Electronics; and by Jean-Philippe Brantut, professor at EPFL.

The coldest place in the Universe

The researchers tackled the problem by conducting their experiments on a perfectly clean artificial material, meaning they could control the interaction and the periodic potential. Instead of circulating electrons whose long-range interactions make predictions more difficult, the scientists used ultra-cold neutral lithium-6 atoms, which they stored using a laser in two borderless tanks, veritable «bowls of light». As Thierry Giamarchi explains: «The core of this experiment is the coldest place in the universe. The temperature there only reaches 70 billionths of a degree above absolute zero, which is much lower than in an interstellar vacuum.»

The atomic reservoirs were then connected by a one-dimensional quantum tube, in which a second laser was employed to simulate the «peaks» of the periodic potential. The researchers were able to measure the conductivity of the tube while varying the relevant parameters, including the length and height of the periodic potential together with the interactions between the particles passing through it. The scientists highlighted an unusual state of matter, predicted by the theory but which no one had been able to observe until then: a band insulator that is maintained regardless of the strength of the attractive interaction between the particles. The intuitive conclusion was that the greater the attraction between the particles, the more likely it was that the material would be a conductor or superconductor. «It's true,» continues Professor Giamarchi, «in a three-dimensional world but in the low-dimensional quantum world, it's an urban legend. When you manage to confine the material in a one-dimensional quantum tube with a periodic potential, it remains insulating, even if there is an infinite attraction.» The huge flexibility resulting from this research paves the way for creating complex structures. «We can see this system as a kind of simulator that will define the ingredients to be used to devise a material that does not yet exist, and that could meet the requirements for future electronic systems - in quantum computers, for example» says Giamarchi.

####

For more information, please click here

Contacts:
Thierry Giamarchi

41-223-796-363

Copyright © University of Geneva

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Produces Cooling Fabrics Using Nanotechnology October 17th, 2018

Iran World’s Second Largest Producer of Nano-Catalysts October 17th, 2018

Quantum Physics

Searching for errors in the quantum world September 21st, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

September 5th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Superconductivity

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Superconductivity above 10 K discovered in a novel quasi-one-dimensional compound K2Mo3As3 August 10th, 2018

Lining Up the Surprising Behaviors of a Superconductor with One of the World's Strongest Magnets August 8th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Possible Futures

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Rice U. announces $82 million in strategic research initiatives: Faculty, programs will expand in neuroengineering, synthetic biology, physical biology October 16th, 2018

Chip Technology

Nanometrics to Announce Third Quarter Financial Results on October 30, 2018 October 10th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Machine learning helps improving photonic applications September 28th, 2018

Quantum Computing

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Discoveries

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Announcements

Shape-shifting sensors could catch early signs of cancer October 19th, 2018

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Iran Unveils Its First Homegrown 3D Nano Printer October 17th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Study provides insight into how nanoparticles interact with biological systems: Findings can help scientists engineer nanoparticles that are ‘benign by design’ October 18th, 2018

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Quantum nanoscience

Quantum mechanics work lets oil industry know promise of recovery experiments September 28th, 2018

September 5th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

How hot is Schrödinger's coffee? August 15th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project