Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level

In a one-dimensional periodic potential, represented here by a Toblerone bar, there is no flow of electrons (represented by Gummy bears) when two of them occupy a hollow space. The research made it possible to observe similar behaviour with ultra-cold lithium-6 atoms.
CREDIT
© ETH Zurich
In a one-dimensional periodic potential, represented here by a Toblerone bar, there is no flow of electrons (represented by Gummy bears) when two of them occupy a hollow space. The research made it possible to observe similar behaviour with ultra-cold lithium-6 atoms. CREDIT © ETH Zurich

Abstract:
Predicting the behaviour of electrons in a material is not easily done. Physicists from the University of Geneva (UNIGE), ETH Zurich and EPFL replaced the electrons with ultra-cold neutral lithium atoms that they had circulated in a one-dimensional quantum tube. The scientists were then able to confirm an unusual state of matter that retains its insulation regardless of the level of attraction between the particles. This work, published in PRX, opens the way to the search for new materials with atypical properties.

When superconductivity disappears in the core of a quantum tube: By replacing the electrons with ultra-cold atoms, a group of physicists has created a perfectly clean material, unveiling new states of matter at the quantum level

Geneva, Switzerland | Posted on April 16th, 2018

The fact that a material is a metal or an insulator depends on a series of microscopic details, such as the strength of the interactions between electrons; the presence of impurities or obstacles; or the number of dimensions through which the charge carriers can propagate. This high degree of complexity means that predicting the electronic properties of a given material is a hard task. Even if we know perfectly how to model the trajectory of a particle in a vacuum, we struggle to do the same thing in a material (a crystal for example), where the electrons circulate between the nuclei of positively-charged atoms. The latter generate a periodic potential, much like a series of peaks that affect the motion of the electrons, thereby complicating predictions. Will the material be a metal? An insulator? Or a semiconductor? It will all depend on two parameters: the strength of the interaction between the electrons and the strength of the periodic potential. The answer to these questions was found in the ongoing discussions and debates between a group of theorists, led by Thierry Giamarchi, professor in the Department of Quantum Matter Physics (physics section) in UNIGE's Faculty of Sciences, and the experimental groups based in Zurich and Lausanne, led by Martin Lebrat, from the group headed by Professor Tilman Esslinger at ETH Zurich's Institute for Quantum Electronics; and by Jean-Philippe Brantut, professor at EPFL.

The coldest place in the Universe

The researchers tackled the problem by conducting their experiments on a perfectly clean artificial material, meaning they could control the interaction and the periodic potential. Instead of circulating electrons whose long-range interactions make predictions more difficult, the scientists used ultra-cold neutral lithium-6 atoms, which they stored using a laser in two borderless tanks, veritable «bowls of light». As Thierry Giamarchi explains: «The core of this experiment is the coldest place in the universe. The temperature there only reaches 70 billionths of a degree above absolute zero, which is much lower than in an interstellar vacuum.»

The atomic reservoirs were then connected by a one-dimensional quantum tube, in which a second laser was employed to simulate the «peaks» of the periodic potential. The researchers were able to measure the conductivity of the tube while varying the relevant parameters, including the length and height of the periodic potential together with the interactions between the particles passing through it. The scientists highlighted an unusual state of matter, predicted by the theory but which no one had been able to observe until then: a band insulator that is maintained regardless of the strength of the attractive interaction between the particles. The intuitive conclusion was that the greater the attraction between the particles, the more likely it was that the material would be a conductor or superconductor. «It's true,» continues Professor Giamarchi, «in a three-dimensional world but in the low-dimensional quantum world, it's an urban legend. When you manage to confine the material in a one-dimensional quantum tube with a periodic potential, it remains insulating, even if there is an infinite attraction.» The huge flexibility resulting from this research paves the way for creating complex structures. «We can see this system as a kind of simulator that will define the ingredients to be used to devise a material that does not yet exist, and that could meet the requirements for future electronic systems - in quantum computers, for example» says Giamarchi.

####

For more information, please click here

Contacts:
Thierry Giamarchi

41-223-796-363

Copyright © University of Geneva

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-APOC3 June 21st, 2019

Superconductivity

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Scientists break record for highest-temperature superconductor: Experiment produces new material that can conduct electricity perfectly May 24th, 2019

Manipulating superconductivity using a 'mechanic' and an 'electrician' May 10th, 2019

Quantum Physics

Breaking the symmetry in the quantum realm May 31st, 2019

Data science helps engineers discover new materials for solar cells and LEDs May 24th, 2019

Govt.-Legislation/Regulation/Funding/Policy

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-APOC3 June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Possible Futures

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Chip Technology

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Quantum Computing

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Discoveries

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Announcements

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) June 22nd, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Researchers report new understanding of thermoelectric materials: Discovery leads to promising new materials for converting waste heat to power June 21st, 2019

Millions with neurological diseases could find new option in implantable neurostimulation devices June 21st, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

'Nanoemulsion' gels offer new way to deliver drugs through the skin: Novel materials made with FDA-approved components could deliver large payloads of active ingredients June 21st, 2019

Next-gen solar cells spin in new direction: Phosphorene shows efficiency promise June 21st, 2019

Ice lithography: opportunities and challenges in 3D nanofabrication June 21st, 2019

Electron-behaving nanoparticles rock current understanding of matter: Discovery will lead to new methods for materials design June 20th, 2019

Quantum nanoscience

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

2D crystals conforming to 3D curves create strain for engineering quantum devices June 7th, 2019

Quantum information gets a boost from thin-film breakthrough: Method opens new path to all-optical quantum computers, other technologies May 31st, 2019

Manipulating atoms one at a time with an electron beam: New method could be useful for building quantum sensors and computers May 17th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project