Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Psst! A whispering gallery for light boosts solar cells

This is illustration shows the nanoresonator coating, consisting of thousands of tiny glass beads, deposited on solar cells. The coating enhances both the absorption of sunlight and the amount of current produced by the solar cells.
CREDIT
K. Dill, D. Ha, G. Holland/NIST
This is illustration shows the nanoresonator coating, consisting of thousands of tiny glass beads, deposited on solar cells. The coating enhances both the absorption of sunlight and the amount of current produced by the solar cells. CREDIT K. Dill, D. Ha, G. Holland/NIST

Abstract:
Trapping light with an optical version of a whispering gallery, researchers at the National Institute of Standards and Technology (NIST) have developed a nanoscale coating for solar cells that enables them to absorb about 20 percent more sunlight than uncoated devices. The coating, applied with a technique that could be incorporated into manufacturing, opens a new path for developing low-cost, high-efficiency solar cells with abundant, renewable and environmentally friendly materials.

Psst! A whispering gallery for light boosts solar cells

Gaithersburg, MD | Posted on April 14th, 2018

The coating consists of thousands of tiny glass beads, only about one-hundredth the width of a human hair. When sunlight hits the coating, the light waves are steered around the nanoscale bead, similar to the way sound waves travel around a curved wall such as the dome in St. Paul's Cathedral in London. At such curved structures, known as acoustic whispering galleries, a person standing near one part of the wall easily hears a faint sound originating at any other part of the wall.

Whispering galleries for light were developed about a decade ago, but researchers have only recently explored their use in solar-cell coatings. In the experimental set up devised by a team including Dongheon Ha of NIST and the University of Maryland's NanoCenter, the light captured by the nanoresonator coating eventually leaks out and is absorbed by an underlying solar cell made of gallium arsenide.

Using a laser as a light source to excite individual nanoresonators in the coating, the team found that the coated solar cells absorbed, on average, 20 percent more visible light than bare cells. The measurements also revealed that the coated cells produced about 20 percent more current.

The study is the first to demonstrate the efficiency of the coatings using precision nanoscale measurements, said Ha. "Although calculations had suggested the coatings would enhance the solar cells, we could not prove this was the case until we had developed the nanoscale measurement technologies that were needed," he noted.

This work was described in a recent issue of Nanotechnology by Ha, collaborator Yohan Yoon of NIST and Maryland's NanoCenter, and NIST physicist Nikolai Zhitenev.

The team also devised a rapid, less-costly method of applying the nanoresonator coating. Researchers had previously coated semiconductor material by dipping it in a tub of the nanoresonator solution. The dipping method takes time and coats both sides of the semiconductor even though only one side requires the treatment.

In the team's method, droplets of the nanoresonator solution are placed on just one side of the solar cell. A wire-wound metal rod is then pulled across the cell, spreading out the solution and forming a coating made of closely packed nanoresonators. This is the first time that researchers have applied the rod method, used for more than a century to coat material in a factory setting, to a gallium arsenide solar cell.

"This is an inexpensive process and is compatible with mass production," said Ha.

####

For more information, please click here

Contacts:
Ben P. Stein

301-975-2763

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: Dongheon Ha, Yohan Yoon and Nikolai B Zhitenev. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings. Nanotechnology. Published 15 February 2018. DOI: 10.1088/1361-6528/aaab0c

Related News Press

News and information

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Laboratories

Revealing hidden spin: Unlocking new paths toward high-temperature superconductors: Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission January 4th, 2019

Carrying and releasing nanoscale cargo with 'nanowrappers': Nanocubes with hollow interiors and surface openings whose shape, size, and location are precisely controlled could be used to load and unload materials for biomedical, catalysis, and optical sensing applications January 3rd, 2019

New composite advances lignin as a renewable 3D printing material December 28th, 2018

Scientists use magnetic defects to achieve electromagnetic wave breakthrough December 20th, 2018

Govt.-Legislation/Regulation/Funding/Policy

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-APOC3 for Treatment of Hypertriglyceridemia January 7th, 2019

Possible Futures

Chirality in 'real-time' January 14th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Discoveries

Chirality in 'real-time' January 14th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Materials/Metamaterials

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Announcements

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

Chirality in 'real-time' January 14th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

2D materials may enable electric vehicles to get 500 miles on a single charge January 11th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

Cartilage could be key to safe 'structural batteries' January 11th, 2019

Energy

Drilling speed increased by 20% yet another upgrade in the oil & gas sector made possible by graphene nanotubes January 15th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Physicists uncover new competing state of matter in superconducting material January 4th, 2019

Revealing hidden spin: Unlocking new paths toward high-temperature superconductors: Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission January 4th, 2019

Research partnerships

Chirality in 'real-time' January 14th, 2019

Ultra-sensitive sensor with gold nanoparticle array January 9th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Revealing hidden spin: Unlocking new paths toward high-temperature superconductors: Berkeley Lab researchers uncover insights into superconductivity, leading potentially to more efficient power transmission January 4th, 2019

Solar/Photovoltaic

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Study unlocks full potential of 'supermaterial' graphene: Researchers remove silicon contamination from graphene to double its performance November 30th, 2018

Perovskite solar cells leap toward commercialization September 28th, 2018

September 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project