Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Movable silicon 'lenses' enable neutrons to see new range of details inside objects

The neutron interferometer can scan the interior of thick objects, such as this chunk of granite, providing enough detail to show the four types of rock that are mixed within it.
CREDIT
Huber & Hanacek, NIST
The neutron interferometer can scan the interior of thick objects, such as this chunk of granite, providing enough detail to show the four types of rock that are mixed within it. CREDIT Huber & Hanacek, NIST

Abstract:
You can't see well without lenses that can focus, whether those lenses are in your eye or the microscope you peer through. An innovative new way to focus beams of neutrons might allow scientists to probe the interiors of opaque objects at a size range they were blind to previously, allowing them to explore the innards of objects from meteorites to cutting-edge manufactured materials without damaging them.

Movable silicon 'lenses' enable neutrons to see new range of details inside objects

Gaithersburg, MD | Posted on March 15th, 2018

The method, published today in Physical Review Letters, could convert what historically has been a support tool for neutron science into a full-fledged scanning technique that could reveal details ranging in size from 1 nanometer up to 10 micrometers within larger objects. The approach provides this tool, known as neutron interferometry, with what are essentially its first movable "lenses" capable of zooming in and out on details in this size range -- a range that has been difficult to probe, even with other neutron scanning methods.

More precisely, these "lenses" are silicon wafers acting as diffraction gratings, which take advantage of neutrons' wavelike properties. The gratings split and redirect a neutron beam so that the waves bounce off an object's edges and then collide with one another, creating a visible moiré interference pattern representative of the object that is easy for experts to interpret.

The method was developed by a team of researchers from the National Institute of Standards and Technology (NIST), the National Institutes of Health (NIH), and Canada's University of Waterloo. According to NIST's Michael Huber, the approach could make neutron interferometry into one of the best exploratory tools in a material scientist's kit.

"We can look at structure on lots of different levels and at different scales," said Huber, a physicist with NIST's Physical Measurement Laboratory who conducts experiments at the NIST Center for Neutron Research (NCNR). "It could complement other scanning techniques because its resolution is so good. It has a dramatic ability to focus, and we aren't limited to looking at thin slices of material as with other methods--we can easily look inside a thick chunk of rock."

Interferometry is a specialty in the world of neutron science. Before scientists can probe an object's interior with a neutron beam, they must first possess a few fundamental details about how the neutrons will bounce off the object's atomic structure. One of those details is a substance's index of refraction, a number indicating how much it will bend the beam from the direction it is traveling. (Water bends light in a related fashion--that's why your arm looks like it bends away when you dip it into a swimming pool.) Neutron interferometry is the best way to obtain that crucial measurement.

Neutron interferometry also has potential for other uses in fundamental physics, such as accurately measuring the gravitational constant. It's sensitive enough to detect how an object's gravitational force can deflect neutrons, just as the Earth attracts a flying ball (and vice versa). But the neutron method's Achilles' heel has been how slowly it works. To focus neutrons on a sample of material, an interferometer has needed a crystal carved to precise dimensions out of a single large block of expensive, top-quality silicon. (Other neutron techniques can make do with crystals of far lower quality.)

Unfortunately, crystals that are good enough for interferometry also block out most of the neutrons that strike them, meaning it takes a long time for a beam to send enough neutrons past a sample to get an accurate index of refraction. Other tasks would take far longer.

"The neutron sources are already very weak," said Waterloo's Dmitry Pushin. "It would take a hundred years to get a good answer to fundamental questions such as the value of the gravitational constant."

The new approach sidesteps these problems by using a trio of thin silicon gratings to focus the neutrons instead of a single costly crystal. Under a microscope, the flat surface of each grating looks like a comb with narrow, closely spaced teeth. Not only do the gratings allow the entire neutron beam to pass through them--rather than the trickle of neutrons that get through the crystal--they have the pivotal advantage of being movable.

"You focus by moving the grating a fraction of a millimeter," Huber said. "It's slight but not difficult."

Demonstrated at the NIST Center for Neutron Research, the team's approach builds on a discovery initially made at NIH, where scientists were experimenting with applying the gratings to X-ray beams and noticed a moiré pattern forming on their visual imager.

"The idea was first developed by our lab to capture the image of materials where X-rays travel at slightly different speeds than in the air, such as the human body itself," said Han Wen, senior investigator at NIH's National Heart, Lung, and Blood Institute. "Central to this idea is X-ray gratings, which were made with the highly specialized tools at the NIST Nanofab facility."

Fortuitously, the NIST and Waterloo scientists met the NIH team members at a conference and struck up a collaboration, suspecting that the gratings would work just as well for neutrons as for X-rays. The NIH team brought the gratings back to NIST, where they were assembled into the neutron interferometer.

After equally good results at the NCNR, Huber said only one thing stands in the way of their interferometer becoming a great tool for industry: They need a set of apertures of different widths the neutron beam will pass through before it hits the interferometer. Right now, they only have a single aperture at their disposal, and it limits their vision.

"We can see the full range of 1 nanometers to 10 micrometers now, but the image is kind of blurry because we don't get enough data," he said. "Every different aperture gives us another data point, and with enough points we can start doing quantitative analysis of a material's microstructure. We're hoping that we can get a set of maybe a hundred made, which would enable us to get detailed quantitative information."

The team has already scanned the interior of a block of granite that contains a mixture of four different minerals, and the scan shows the details of where each bit of mineral sits. Huber said the method would be good for non-invasive scans of porous objects like meteorites or manufactured materials, such as gels or foams, which are the basis of many consumer products.

"We're also hoping we can finally do that gravitational constant measurement," he said. "We could put a big block of some heavy metal like tungsten nearby and see how it bends the beam. It would improve our understanding of the universe and wouldn't take longer than our lifetimes."

####

For more information, please click here

Contacts:
Chad Boutin

301-975-4261

Copyright © National Institute of Standards and Technology (NIST)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

Imaging

Tiny camera lens may help link quantum computers to network September 14th, 2018

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Virginia Tech researchers develop novel process to 3D print one of the strongest materials on Earth August 23rd, 2018

Connecting the (Nano) Dots: NIST Says Big-Picture Thinking Can Advance Nanoparticle Manufacturing August 22nd, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Could a demon help to create a quantum computer? Physicists implement a version of Maxwell's famous thought experiment for reducing entropy September 5th, 2018

Ultracold atoms used to verify 1963 prediction about 1D electrons: Rice University, University of Geneva study focuses on theory that's increasingly relevant to chipmakers September 5th, 2018

Discoveries

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Announcements

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project