Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Cleaning nanowires to get out more light

Treating aluminum-gallium-nitride nanowires with a diluted potassium-hydroxide solution can enhance the ultraviolet light output power as compared to an untreated device.
Reprinted with permission from Sun, H., Shakfa, M.K., Muhammed, M.M., Janjua, B., Li, K.-H., Lin, R., Ng, T.K., Roqan, I.S., Ooi, B.S. & Li, X. Surface-passivated AlGaN nanowires for enhanced luminescence of ultraviolet light emitting diodes. ACS Photonics advance online publication, 19 December 2017. 2017 American Chemical Society; KAUST Heno Hwang
Treating aluminum-gallium-nitride nanowires with a diluted potassium-hydroxide solution can enhance the ultraviolet light output power as compared to an untreated device. Reprinted with permission from Sun, H., Shakfa, M.K., Muhammed, M.M., Janjua, B., Li, K.-H., Lin, R., Ng, T.K., Roqan, I.S., Ooi, B.S. & Li, X. Surface-passivated AlGaN nanowires for enhanced luminescence of ultraviolet light emitting diodes. ACS Photonics advance online publication, 19 December 2017. 2017 American Chemical Society; KAUST Heno Hwang

Abstract:
A technique for reducing the loss of light at the surface of semiconductor nanostructures has been demonstrated by scientists at KAUST.

Cleaning nanowires to get out more light

Thuwal, Saudi Arabia | Posted on March 7th, 2018

Some materials can efficiently convert the electrons in an electrical current into light. These so-called semiconductors are used to create light-emitting diodes or LEDs: small, light, energy-efficient, long-lasting devices that are increasingly prevalent in both lighting and display applications.

The color, or wavelength, of the emitted light can be determined by choosing the appropriate material. Gallium arsenide, for example, emits predominantly infrared light. For shorter wavelengths that move into the blue or ultraviolet region of the spectrum, scientists have turned to gallium nitride. Then, to tune down the emission wavelength, aluminum can be added, which alters the spacing between the atoms and increases the energy bandgap.

However, numerous factors prevent all the radiation created in the semiconductor escaping the device to act as an efficient light source. Firstly, most semiconducting materials have a high refractive index, which makes semiconductor-air interfaces highly reflected--at some angles all light bounces backwards in a process known as total internal reflectivity. A second limitation is that imperfections at the surface act as traps that reabsorb the light before it can escape.

Postdoc Haiding Sun and his KAUST colleagues, including his supervisor, Assistant Prof. Xiaohang Li, Prof. Boon Ooi and Assistant Prof. Iman Roqan, have developed LEDs that are made up of a tight array of dislocation-free nanometer-scale aluminum-gallium-nitride nanowires on a titanium-coated silicon substrate. More light can be efficiently extracted due to the presence of the air gaps between nanowires via scattering. The trade-off however is that arrays of nanowires have a larger surface area than a planar structure. "Because of the large surface-to-volume ratio of nanowires, their optical and electrical properties are highly sensitive to their surroundings," says Sun. "Surface states and defects will lead to low-efficiency light-emitting devices."

Sun and the team show that treating the nanowires in a diluted potassium-hydroxide solution can suppress the surface reabsorption by removing dangling chemical bonds and preventing oxidization. Their results showed that a 30 second treatment led to a 49.7 percent enhancement in the ultraviolet light output power as compared with an untreated device.

"We aim to improve our device's performance in several ways," says Sun. "For example, we will optimize the nanowire growth conditions, we will use quantum-well structures in the active region and we will use different metal substrates to improve the light-extraction efficiency."

####

For more information, please click here

Contacts:
Carolyn Unck

Copyright © King Abdullah University of Science and Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Disability Can Be a Superpower in Space Disabled astronauts offer unique solutions to emergencies in space May 17th, 2018

Chemistry

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Ancient paper art, kirigami, poised to improve smart clothing: New research shows how paper-cutting can make ultra strong, stretchable electronics April 3rd, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Possible Futures

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Discoveries

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Materials/Metamaterials

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

Mining for gold with a computer: Texas A&M team gleans new insights on key material May 3rd, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Announcements

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

NIST Puts the Optical Microscope Under the Microscope to Achieve Atomic Accuracy May 22nd, 2018

Magnesium magnificent for plasmonic applications: Rice University, University of Cambridge synthesize and test nanoparticles of abundant material May 22nd, 2018

Self-assembling 3D battery would charge in seconds May 22nd, 2018

Supersonic waves may help electronics beat the heat May 18th, 2018

Quantum nanoscience

Nanoscale measurements 100x more precise, thanks to improved two-photon technique May 8th, 2018

'Exceptional' research points way toward quantum discoveries: Rice University scientists make tunable light-matter couplings in nanotube films April 30th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Quantum shift shows itself in coupled light and matter: Rice University scientists corral, quantify subtle movement in condensed matter system April 16th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project