Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging

Abstract:
CEA-Leti’s chief scientist today issued a forward-looking call to action for the microelectronics industry to create a radically new, digital-communication architecture for the Internet of Things in which “a great deal of analytics processing occurs at the edge and at the end devices instead of in the Cloud”.

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging

San Francisco, CA | Posted on February 13th, 2018

Delivering a keynote presentation at the kickoff of ISSCC 2018, Barbara De Salvo said this architecture will include human-brain inspired hardware coupled to new computing paradigms and algorithms that “will allow for distributed intelligence over the whole IoT network, all-the-way down to ultralow-power end-devices.”

“We are entering a new era where artificial-intelligence systems are … shaping the future world,” said De Salvo, who also is Leti’s scientific director. “With the end of Moore’s Law in sight, transformative approaches are needed to address the enduring power-efficiency issues of traditional computing architectures.”

The potential efficiencies of processing data at the edge of networks – e.g. by small computers located near IoT-connected devices – rather than at distant data centers or the Cloud are increasingly cited as long-term goals for the Internet of Things. But the challenges to realizing this vision are formidable. For example, IoT battery-powered devices lack both processing power to analyze the data they receive and a power source that would support data processing.

To break through these barriers, De Salvo called for a “holistic research approach to the development of low-power architectures inspired by the human brain, where process development and integration, circuit design, system architecture and learning algorithms are simultaneously optimized.” She envisions a future in which optimized neuromorphic hardware will be implemented as a highly promising solution for future ultralow-power cognitive systems that extend well beyond the IoT.


“Emerging technologies such as advanced CMOS, 3D technologies, emerging resistive memories, and silicon photonics, coupled with novel brain-inspired paradigms, such as spike-coding and spike-time-dependent-plasticity, have extraordinary potential to provide intelligent features in hardware, approaching the way knowledge is created and processed in the human brain,” she said.

De Salvo’s presentation, “Brain-Inspired Technologies: Towards Chips that Think”, included summaries of key research findings in a variety of fields that will play a role in developing brain-inspired technologies for computing and data-handling requirements of a “hyperconnected” world.


Human Brain Research
Tracing major discoveries about how the brain works, De Salvo cited the emergence of connectionism, novel neuroimaging techniques and the functioning of neural networks, which may provide models for brain-inspired technologies.

“The large-scale neuronal networks of the brain are arranged globally as hierarchical modular networks, with dense modules at the local level (cellular circuits, laminar compartments) that are encapsulated in increasingly larger modules (cortical columns, areas and whole lobes), but with very sparse overall connectivity,” she said. “Such a topology fundamentally enhances the brain’s dynamic stability and information-processing abilities.

“An important research target will be to understand how the three-dimensional organization of brain cells, neurons and glial cells, connected in networks within the layers of the brain cortex, are responsible for the emergence of genetically determined elementary operations,” De Salvo said.

Hyperconnectivity and Deep Learning
She also noted that the convergence of miniaturization, wireless connectivity, increased data-storage capacity, and data analytics, has positioned the Internet of Things at the epicenter of profound social, business and political changes.

“With billions of easy-access and low-cost connected devices, the world has entered the era of hyperconnectivity, enabling people and machines to interact in a symbiotic way (anytime, anywhere) with both the physical and cyber worlds,” De Salvo said. “AI has been at the center of this revolution.”

She cited significant gains in the performance and applications of machine learning, driven by vast data storage in images, videos, audio and text files available across the Internet. These gains, in turn, have been essential to the dramatic improvement of learning/training approaches and algorithms, as well as the increased computational power of computers, including parallel computing for neural network processing, which has compensated for the slowing down of Moore’s Law below the 10nm node. Deep learning is the most popular machine-learning field.

“Today, for tasks such as image or speech recognition, machine-learning applications are equaling or even surpassing expert human performance,” De Salvo said. “Other tasks considered as extremely difficult in the past, such as natural language comprehension or complex games, have been successfully tackled.” Future applications will require even more analysis, understanding of the environment and intelligence, and machine-learning algorithms will require more computing power to become pervasive.

Approaching the Edge
“Bringing intelligence to the edge or to end-devices means doing useful processing of the data as close to the collection point as possible, and allowing systems to make some operational decisions locally, possibly semi-autonomously,” De Salvo explained.

Controlling real-time distance learning locally is essential for many applications, from landing drones to navigating driverless cars. “The delay caused by the round-trip to the Cloud could lead to disastrous or even fatal results,” she said. “Privacy will require that key data not leave the user’s device, while transmission of high-level information, generated by local neural-network algorithms, will be authorized.”
Raw videos generated by millions of cameras will have to be locally analyzed to limit bandwidth issues and communication costs. For all these reasons, new concepts and technologies that can bring artificial intelligence closer to the edge and end-devices are in high demand.

“The primary design goal in distributed applications covering several levels of hierarchy (similar to what happens in the brain), is to find a global optimum between performance and energy consumption,” De Salvo said. “This imperative requires a holistic research approach, where the technology stack (from device to applications) is redesigned.”

This process is underway. Companies are addressing embedded applications by developing specialized edge platforms that can execute machine-learning algorithms on embedded hardware. Impressive power improvements (down to a few watts) have been achieved exploiting Moore’s Law: pushing the FinFET technology down to the 7nm node and by hardware-software co-optimization. To optimize energy efficiency in mobile devices, several research groups have focused on hardware designs of Convolutional Neural Network (CNN) accelerators. De Salvo noted that off-chip storage devices, such as DRAMs, significantly increase power consumption, but that mobile-oriented applications (keyword spotting and face detection) have been demonstrated with a low-power programmable deep-learning accelerator that consumes less than 300µW.

‘Extremely Critical’ Power Requirements
Some fixes to challenges are still in the discussion stage. For example, De Salvo noted that bringing intelligence into low-power IoT-connected end-devices that support applications such as habitat monitoring and medical surveillance is significantly more difficult than bringing it to traditional networked mobile devices at the edge. “Most connected end devices are wireless sensor nodes containing microcontrollers, wireless transceivers, sensors, and actuators,” she said. “The power requirement for these systems is extremely critical – less than 100μW for normal workloads – as these devices often operate using energy-harvesting sources or a single battery for several years.”

De Salvo said scientists inspired by the human brain, whose computing performance and efficiency still remain unmatched, are pursuing a radically different approach to neuromorphic systems. “It consists in implementing bio-inspired architectures in optimized neuromorphic hardware to provide direct one-to-one mapping between the hardware and the learning algorithm running on it,” she said. These architectures include spike coding, which encodes neuron values as pulses or spikes rather then analog or digital values, and spike-timing-dependent-plasticity, a bio-inspired algorithm that enables unsupervised learning.

3D Technologies: Key Enablers of Neuromorphic Hardware
De Salvo said the human brain’s intelligence and efficiency are strongly linked to its extremely dense 3D interconnectivity. For example, there are approximately 10,000 synapses per neuron, and billions of neurons in the human brain cortex. “The hierarchical structure in the cortex follows specific patterns, through vertical arrangements or µcolumns, where local data flow on subcortical specialized structures, and laminar interconnections, which foster inter-area communications and to build the hierarchy.

“Based on these considerations, it is clear that emerging 3D technologies, such as through-silicon vias and 3D monolithic integration, also called CoolCubeTM, will be a key enabler of efficient neuromorphic hardware,” she said.

Outlining silicon technologies that will be vital to creating brain-inspired hardware, De Salvo also cited resistive memories or ReRAM, Fully Depleted Silicon on Insulator and silicon photonics.
“Thanks to its suitability for low-power design, FDSOI technology is a great candidate for neuromorphic hardware,” she said. In deep-learning architectures, high-performance reconfigurable digital processors based on 28nm FDSOI have shown power consumption in the range of 50mW, a power efficiency achieved by introducing optimized data-movement strategy and exploiting FDSOI back-biasing strategies. De Salvo also noted that a large-scale multi-core neuromorphic processor called Dynap-SEL, also based on 28nm FDSOI, recently was demonstrated.

The Road Ahead
De Salvo concluded her optimistic presentation about the future and potential of brain-inspired hardware, AI and edge computing by listing the technological challenges on the road to that goal. But she left the audience with one final prediction.

“New materials to interface devices with living cells and tissues, new design architectures for lowering power consumption, data extraction and management at the system level, and secured communications are the next domains that will experience intense development,” she said. “Brain-inspired implantable microdevices, acting as intelligent neuroprostheses, and bio-hybrid systems represent the new era of cross-disciplinary brain-repair strategies, where biological and engineered solutions will complement each other, probably mediated by artificial intelligence.”

####

About Leti
Leti, a technology research institute at CEA Tech, is a global leader in miniaturization technologies enabling smart, energy-efficient and secure solutions for industry. Founded in 1967, Leti pioneers micro-& nanotechnologies, tailoring differentiating applicative solutions for global companies, SMEs and startups. Leti tackles critical challenges in healthcare, energy and digital migration. From sensors to data processing and computing solutions, Leti’s multidisciplinary teams deliver solid expertise, leveraging world-class pre-industrialization facilities. With a staff of more than 1,900, a portfolio of 2,700 patents, 91,500 sq. ft. of cleanroom space and a clear IP policy, the institute is based in Grenoble, France, and has offices in Silicon Valley and Tokyo. Leti has launched 60 startups and is a member of the Carnot Institutes network. Follow us on www.leti-cea.com and @CEA_Leti.

CEA Tech is the technology research branch of the French Alternative Energies and Atomic Energy Commission (CEA), a key player in innovative R&D, defence & security, nuclear energy, technological research for industry and fundamental science, identified by Thomson Reuters as the second most innovative research organization in the world. CEA Tech leverages a unique innovation-driven culture and unrivalled expertise to develop and disseminate new technologies for industry, helping to create high-end products and provide a competitive edge.

For more information, please click here

Contacts:
Press Contact
Agency
+33 6 74 93 23 47

Copyright © Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Internet-of-Things

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

GLOBALFOUNDRIES Strengthens 22FDX® eMRAM Platform with eVaderis’ Ultra-low Power MCU Reference Design: Co-developed technology solution enables significant power and die size reductions for IoT and wearable products February 27th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Brain-Computer Interfaces

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Are We Quantum Computers? Led by UCSB’s Matthew Fisher, an international collaboration of researchers will investigate the brain’s potential for quantum computation March 27th, 2018

Possible Futures

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Announcements

Sirrus's Issued Patent Portfolio Continues To Accelerate July 18th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Automotive/Transportation

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

GLOBALFOUNDRIES to Deliver Socionext’s Next Generation Graphics Controller for Advanced In-Vehicle Display Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, enables enhanced features and security protection for remote display applications June 28th, 2018

Events/Classes

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

SUNY Poly-Led AIM Photonics and Partners Attend SEMICON West 2018 to Showcase High-Tech Advances, Collaboration, and Future R&D Opportunities: New York’s Tech Valley Makes a Major Showing in Silicon Valley July 3rd, 2018

Arrowhead Presents New Clinical Data on ARO-AAT at Alpha-1 National Education Conference July 1st, 2018

Nanometrics to Participate in the 10th Annual CEO Investor Summit 2018: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2018 in San Francisco June 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project