Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Using injectable self-assembled nanomaterials for sustained delivery of drugs: New injectable delivery system can slowly release drug carriers for months

Evan Scott's hydrogel network functions as a drug depot that slowly degrades by breaking down into micelles.
Evan Scott's hydrogel network functions as a drug depot that slowly degrades by breaking down into micelles.

Abstract:
Because they can be programmed to travel the body and selectively target cancer and other sites of disease, nanometer-scale vehicles called nanocarriers can deliver higher concentrations of drugs to bombard specific areas of the body while minimizing systemic side effects. Nanocarriers can also deliver drugs and diagnostic agents that are typically not soluble in water or blood as well as significantly decrease the effective dosage.

Using injectable self-assembled nanomaterials for sustained delivery of drugs: New injectable delivery system can slowly release drug carriers for months

Evanston, IL | Posted on February 12th, 2018

Although this method might seem ideal for treating diseases, nanocarriers are not without their challenges.

"Controlled, sustained delivery is advantageous for treating many chronic disorders, but this is difficult to achieve with nanomaterials without inducing undesirable local inflammation," said Northwestern University's Evan Scott. "Instead, nanomaterials are typically administered as multiple separate injections or as a transfusion that can take longer than an hour. It would be great if physicians could give one injection, which continuously released nanomaterials over a controlled period of time."

Now Scott, an assistant professor of biomedical engineering in Northwestern's McCormick School of Engineering, has developed a new mechanism that makes that controlled, sustained delivery possible.

Scott's team designed a nanocarrier formulation that -- after quickly forming into a gel inside the body at the site of injection -- can continuously release nanoscale drug-loaded vehicles for months. The gel itself re-assembles into the nanocarriers, so after all of the drug has been delivered, no residual material is left to induce inflammation or fibrous tissue formation. This system could, for example, enable single-administration vaccines that do not require boosters as well as a new way to deliver chemotherapy, hormone therapy, or drugs that facilitate wound healing.

Supported by the National Science Foundation and National Institutes of Health, the research was published online today, February 12 in the journal Nature Communications. Nicholas Karabin, a graduate student in Scott's laboratory, was the paper's first author. Northwestern Engineering's Kenneth Shull, professor of materials science and engineering, also contributed to the work. A member of Northwestern's Simpson Querrey Institute for BioNanotechnology and Chemistry of Life Processes Institute, Scott was corresponding author and led the nanoparticle development and in vivo validation.

Currently, the most common sustained nanocarrier delivery systems hold nanomaterials within polymer matrices. These networks are implanted into the body, where they slowly release the trapped drug carriers over a period of time. The problem lies after the delivery is complete: the networks remain inside the body, often eliciting a foreign-body response. The leftover network can cause discomfort and chronic inflammation in the patient.

To bypass this issue, Scott developed a nanocarrier using self-assembled, filament-shaped nanomaterials, which are loaded with a drug or imaging agent. When crosslinked together, the filaments form a hydrogel network that is similar to structural tissue in the human body. After the filaments are injected into the body, the resulting hydrogel network functions as a drug depot that slowly degrades by breaking down into spherical nanomaterials called micelles, which are programmed to travel to specific targets. Because the network morphs into the drug-delivery system, nothing is less behind to cause inflammation.

"All of the material holds the drug and then delivers the drug," Scott explained. "It degrades in a controlled fashion, resulting in nanomaterials that are of equal shape and size. If we load a drug into the filaments, the micelles take the drug and leave with it."

After testing the system both in vitro and in vivo in an animal model, Scott's team demonstrated they could administer a subcutaneous injection that slowly delivered nanomaterials to cells in lymph nodes for over a month in a controlled fashion.

Scott said the system can be used for other nanostructures in addition to micelles. For example, the system could include vesicle-shaped nanoparticles, such as liposomes or polyersomes, that have drugs, proteins, or antibodies trapped inside. Different vesicles could carry different drugs and release them at different rates once inside the body.

"Next we are looking for ways to tailor the system to the needs of specific diseases and therapies," Scott said. "We're currently working to find ways to deliver chemotherapeutics and vaccines. Chemotherapy usually requires the delivery of multiple toxic drugs at high concentrations, and we could deliver all of these drugs in one injection at much lower dosages. For immunization, these injectable hydrogels could be administered like standard vaccines, but stimulate specific cells of the immune system for longer, controlled periods of time and potentially avoid the need for boosters."

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

Cancer

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

DNA Origami full of potent anticancer agents: A tailored DNA nanoplatform carries chemotherapeutic drugs and RNA interference toward multidrug-resistant tumors November 22nd, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Hydrogels

Researchers create new 'smart' material with potential biomedical, environmental uses November 23rd, 2018

New bio-inspired dynamic materials transform themselves: Highly dynamic synthetic superstructure provides new clues on brain, spinal cord injuries and neurological disease October 5th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Oxford Instruments participates in the launch of the European Quantum Technology Flagship Programme ‘QMiCS’ December 13th, 2018

Possible Futures

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Nanomedicine

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Announcements

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Birth of a hybrid: High-temperature synthesis under pressure helps to combine properties of metals and ceramics December 15th, 2018

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

Researchers use jiggly Jell-O to make powerful new hydrogen fuel catalyst: The inexpensive new material can split water just as efficiently as costly platinum December 14th, 2018

IMDEA Nanociencia and Universidad Autónoma de Madrid researchers have demonstrated that graphene deposited on a metal surface promotes an unusual chemical reaction that would hardly take place under noncatalyzed conditions. December 14th, 2018

Nanobiotechnology

The role of lipid nanoparticles and its surface modification in reaching the brain: This article by Dr. Manoli Igartua et al. is published in Current Drug Delivery, Volume 15, Issue 9, 2018 December 14th, 2018

A summary of electrospun nanofibers as drug delivery system: This article by Dr. José Manuel Cornejo Bravo et al. is published in Current Drug Delivery, Volume 15 , Issue 10 , 2018 December 14th, 2018

Vitamin E TPGS emulsified vinorelbine bitartrate loaded solid lipid nanoparticles (SLN): This article by Dr. Sanjay Singh et al. is published in Current Drug Delivery, Volume 15 , Issue 8 , 2018 December 14th, 2018

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project