Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials

The scientists used a low-temperature approach to grow this nanowire array composed of zinc-oxide crystals. On average, the nanowires have a diameter of 40–50 nanometers (nm) and a length of 500 nm.
The scientists used a low-temperature approach to grow this nanowire array composed of zinc-oxide crystals. On average, the nanowires have a diameter of 40–50 nanometers (nm) and a length of 500 nm.

Abstract:
Light-emitting diodes (LEDs) traditionally demand atomic perfection to optimize efficiency. On the nanoscale, where structures span just billionths of a meter, defects should be avoided at all costs—until now.

Atomic Flaws Create Surprising, High-Efficiency UV LED Materials: Subtle surface defects increase UV light emission in greener, more cost-effective LED and catalyst materials

Upton, NY | Posted on February 8th, 2018

A team of scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory and Stony Brook University has discovered that subtle imperfections can dramatically increase the efficiency and ultraviolet (UV) light output of certain LED materials.

"The results are surprising and completely counterintuitive," said Brookhaven Lab scientist Mingzhao Liu, the senior author on the study. "These almost imperceptible flaws, which turned out to be missing oxygen in the surface of zinc oxide nanowires, actually enhance performance. This revelation may inspire new nanomaterial designs far beyond LEDs that would otherwise have been reflexively dismissed."

The results, published online Dec. 5, 2017, in Applied Physics Letters, help bring these zinc oxide structures one step closer to use as a UV source in practical applications, including medical sensors, catalysts, and even household lighting.

"The current LED standard for UV light is gallium nitride, which functions beautifully but is both expensive and is far from being environmentally friendly," said Brookhaven scientist and study coauthor Dario Stacchiola. "This 'imperfect' zinc oxide overcomes those issues."

The scientists leveraged the singular instrumentation and expertise available at Brookhaven Lab's Center for Functional Nanomaterials (CFN) and National Synchrotron Light Source II (NSLS-II), both DOE Office of Science User Facilities.

"Having the capability of exploring materials from synthesis to complex characterization is a unique advantage of Brookhaven Lab," Stacchiola said. "In fact, the puzzle of zinc-oxide nanowire emission efficiency could only be solved when new instruments came online at NSLS-II."

Light born on the edge

The high-performing LEDs exploit a phenomenon called near band edge (NBE) photoluminescence found in semiconducting materials.

"When electrons in the conduction band recombine with holes in the valence band—crossing the edge of the so-called band gap—they can emit light," Liu said. "Optimizing that effect, specifically for UV radiation, was our primary goal."

The scientists used a relatively simple low-temperature solution-based approach to grow nanowires composed of zinc-oxide crystals. They then applied oxygen plasma to clean the final nanowire structures.

"By chance, during one test, we executed this plasma step under much lower pressure than usual—and the results were serendipitous and shocking," Liu said. "That low-pressure plasma treatment is the real game changer here."

The unexpected NBE emissions have puzzled scientists for years, but the investigative tools finally advanced enough to shed light on the mystery.

Bright lights and next-gen nanotechnology

The key for the breakthrough came through strong synergy between two beamlines at NSLS-II. Data from beamline 8-ID—one of the most intense x-ray absorption sources in the world—combined with the first set of results from a new, state-of-the-art x-ray photoemission electron microscopy (XPEEM) endstation at beamline 21-ID-2. The XPEEM endstation is run as a partnership between CFN and NSLS-II.

Beamline 8-ID revealed the amount of x-ray absorption, which was then used to deduce the oxidative state of the samples. The measurements at beamline 21-ID-2 complemented that work, bombarding the sample with x-rays to excite electrons and emit photons according to the band levels of the sample. By analyzing that energy, the band positions—and their role in light emission—could be determined with high precision.

"We found that surface oxygen vacancies create dipoles that confine charge carriers to the core of the nanowire," said study coauthor and NSLS-II scientist Klaus Attenkofer. "These vacancies appear to drive the highly efficient and pure light emission. And because we know exactly what distinguishes this zinc-oxide structure, we know how to build on it and explore similar materials."

The new synthesis technique enables additional structures, such as high-quality, titanium oxide layers, which could be ideal for photocatalysts. Such a material could efficiently act as a water-splitter, providing hydrogen fuel for a host of renewable energy technologies. Future experiments will explore this possibility and even watch the catalytic reactions unfold in real time.

"The strong synergy between CFN and NSLS-II makes Brookhaven Lab a unique place to do nanomaterials research," said Chuck Black, the director of the CFN. "Working closely together, the two facilities are developing and offering new research capabilities for the benefit of researchers worldwide. These forefront tools are critical for accelerating nanoscience research, which will enable the advanced materials of tomorrow."

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

For more information, please click here

Contacts:
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific Paper: Near band edge photoluminescence of ZnO nanowires: Optimization via surface engineering:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Previously unknown pathway to batteries with high energy, low cost and long life: Newly discovered reaction mechanism overcomes rapid performance decline in lithium-sulfur batteries September 8th, 2023

Display technology/LEDs/SS Lighting/OLEDs

Light guide plate based on perovskite nanocomposites November 3rd, 2023

Simple ballpoint pen can write custom LEDs August 11th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project