Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum memory with record-breaking capacity based on laser-cooled atoms

This is a cooled and trapped cloud of cold atoms used to realize the quantum memory protocol. The atoms reside in the center of the vacuum chamber, around which the magnetic coils necessary to trap the atoms are visible. The blue color is caused by two near-infrared lasers illuminating the atoms and driving a two-photon transition, which results in spontaneous emission of visible blue light. (Source: FUW, Mateusz Mazelanik)
CREDIT
Source: FUW, Mateusz Mazelanik
This is a cooled and trapped cloud of cold atoms used to realize the quantum memory protocol. The atoms reside in the center of the vacuum chamber, around which the magnetic coils necessary to trap the atoms are visible. The blue color is caused by two near-infrared lasers illuminating the atoms and driving a two-photon transition, which results in spontaneous emission of visible blue light. (Source: FUW, Mateusz Mazelanik) CREDIT Source: FUW, Mateusz Mazelanik

Abstract:
The emerging domain of parallelized quantum information processing opens up new possibilities for precise measurements, communication and imaging. Precise control of multiple stored photons allows efficient handling of this subtle information in large amounts. In the Quantum Memories Laboratory at Faculty of Physics, University of Warsaw a group of laser-cooled atoms has been used as a memory which can store simultaneously up to 665 quantum states of light. The experimental results have been published in a prestigious Nature Communications journal.

Quantum memory with record-breaking capacity based on laser-cooled atoms

Warsaw, Poland | Posted on December 15th, 2017

Every information processing task requires a memory. As any classical computer cannot exist without a RAM memory, quantum computer could not be built without a quantum memory. Quantum memory is a device capable of storage and on demand retrieval of quantum states. The key parameter of such memory is its capacity, in other words the number of qubits (quantum bits) which the memory can effectively process. Simultaneous operation on many qubits is a key to efficient quantum parallel computation, providing new possibilities in the fields on imaging or communication.

Regardless of significant efforts, the on demand generation of many photons remains a key challenge for many experimental groups dealing with quantum information. For a recently widely-used method of multiplexing many single-photon emitters into one network the complexity of experimental systems grows unfavorably with its advantages. Using a quantum memory on the other hand one can generate a group of a dozen photons within seconds rather than years. Among many methods of encoding information about single photons in a quantum memory the spatial multiplexing aided by a single-photon sensitive camera stands out as an effective way to obtain high capacity at low cost.

In the Quantum Memories Laboratory (Faculty of Physics, University of Warsaw) such high-capacity memory has been successfully built. The system now holds a world-record of the largest capacity, as other experimentalists can only harness tens of independent states of light. The heart of the constructed setup comprises a so-called magneto-optical trap (MOT): a group of rubidium atoms inside a glass vacuum chamber is trapped and cooled by lasers in the presence of magnetic field to about 20 microkelvins. The memory light-atoms interface is based on off-resonant light scattering. In the write-in process the cloud of atoms is illuminated by a laser beam, resulting in photon scattering. Each scattered photon is emitted in random direction and registered on a sensitive camera. The information about scattered photons is stored inside the atomic ensemble in the form of collective excitations - spin-waves which can be on demand retrieved as another group of photons. By measuring correlations between emission angles of photons created during the write-in and read-out process we certify that the memory is indeed quantum and that the properties of generated state of light fail to be described by classical optics. The prototype quantum memory from Faculty of Physics at University of Warsaw now takes two optical tables and functions with the help of nine lasers and three control computers.

The quantum memory created using the funding of National Science Center (Poland) "PRELUDIUM" and "OPUS" project as well as Ministry of Science and Higher Education "Diamentowy Grant" project stands out for one more reason. The quantum information about all stored photons resides in a single cloud of cold atoms, and each atom takes part in the storage of each photon, making the memory resilient to a decoherence. This has been confirmed by observing quantum interference of two distinct excitations (differing by just a single quantum number). "This will allow even more complex manipulations of the atomic state, finally to prepare quantum states of light with accurately controlled parameters" - explains prof. Wojciech Wasilewski, head of Quantum Memories Laboratory.

####

For more information, please click here

Contacts:
Michal Dabrowski

48-225-532-629

Copyright © Faculty of Physics University of Warsaw

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Quantum Physics

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Satellite study proves global quantum communication will be possible December 28th, 2018

Videos/Movies

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

How to mass produce cell-sized robots: Technique from MIT could lead to tiny, self-powered devices for environmental, industrial, or medical monitoring October 24th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Possible Futures

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Nanobiotix Plans to Conduct Registered Public Offering in the United States January 17th, 2019

Power stations driven by light: More efficient solar cells imitate photosynthesis January 16th, 2019

Memory Technology

A new 'spin' on kagome lattices: Team's findings shed new light on the presence of spin-orbit coupling and topological spin textures in kagome lattices December 9th, 2018

CEA-Letiís RRAM-based TCAM Circuits Meet Requirements of Multicore Neuromorphic Processors December 5th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Quantum Computing

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Spintronics 'miracle material' put to the test: Physicists build devices using mineral perovskite January 11th, 2019

DNA design that anyone can do: Computer program can translate a free-form 2-D drawing into a DNA structure January 4th, 2019

Quantum chemistry on quantum computers: A quantum algorithm for tracking complex chemical reactions with neither performing demanding post-Hartree-Fock calculations nor exponential time explosion January 4th, 2019

Discoveries

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Announcements

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 5, 2019 January 18th, 2019

ULVAC Inc., and Oxford Instruments Plasma Technology collaborate to bring Atomic Scale Processing solutions to the Japanese Power and RF markets January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Using bacteria to create a water filter that kills bacteria: New technology can clean water twice as fast as commercially available ultrafiltration membranes January 18th, 2019

Kiel physicists discover new effect in the interaction of plasmas with solids January 18th, 2019

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

New materials could help improve the performance of perovskite solar cells January 11th, 2019

Photonics/Optics/Lasers

Brilliant glow of paint-on semiconductors comes from ornate quantum physics January 18th, 2019

Light up logic: Engineers from UTokyo and RIKEN perform computational logic with light January 18th, 2019

Media invited to open meeting on the future of quantum technology held at RIT Jan. 23-25: Leaders from NASA, NSF, NIST and Sandia National Laboratory to attend January 11th, 2019

Carrying and releasing nanoscale cargo with 'nanowrappers': Nanocubes with hollow interiors and surface openings whose shape, size, and location are precisely controlled could be used to load and unload materials for biomedical, catalysis, and optical sensing applications January 3rd, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project