Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Creating a new kind of metallic glass

Yale researchers have discovered a method for creating a new kind of metallic glass, a class of materials made from complex alloys.
Yale researchers have discovered a method for creating a new kind of metallic glass, a class of materials made from complex alloys.

Abstract:
By shrinking samples of metallic glass to nanoscale size, Yale researchers have discovered they can create new materials with potentially new applications.

Creating a new kind of metallic glass

New Haven, CT | Posted on December 7th, 2017

The research, published today in Nature Communications, was conducted as part of Yale’s Center for Research on Interface Structures and Phenomena (CRISP), and led by Judy Cha, the Carol and Douglas Melamed Assistant Professor of Mechanical Engineering & Materials Science, and Jan Schroers, professor of mechanical engineering & materials science.

Metallic glasses are a relatively new class of materials made from complex, multicomponent alloys. They have the moldable pliability of plastics, but the strengths of metals. When metallic glasses cool from a liquid to a solid, their atoms settle into a random arrangement and do not crystallize the way traditional metals do. Cha said they discovered a new form of metallic glasses by making metallic-glass rods so small that there is no room for the nuclei — a phenomenon the researchers call “nucleus starvation” — leading to a new crystalline phase. The rods are less than 35 nanometers in diameter, more than 2,000 times smaller than a human hair.

“This gives us a handle to control the number of nuclei we provide in the sample,” said Cha, who works in the Energy Sciences Institute on Yale’s West Campus. “When it doesn’t have any nuclei — despite the fact that nature tells us that there should be one — it generates this brand new crystalline phase that we’ve never seen before. It’s a way to create a new material out of the old.”

The researchers used the Transmission Electron Microscope at the Yale Institute for Nanoscience and Quantum Engineering to observe the crystallization process in the materials. By controlling the diameter of the metallic-glass nanorods, the researchers were able to tune the number of nuclei present and tailor the crystalline phases.

“As we were doing this, more and more interesting phenomena popped up,” Cha said. “We’re unearthing all these interesting phenomena that occur at the nanoscale.”

Metallic glasses are already being used for a number of applications, including phone casings and golf clubs, but there is still much for researchers to learn about these materials. Cha said one of the next steps is to learn more about this new crystalline phase, how to better control it, and what kinds of properties can result from it. The discovery also opens up new possibilities for different chemical compounds that have already been developed by conventional methods, she said.

"We don’t really know a lot about these systems, and when we work with them in smaller, nanometer scales, then a new science and a new physics emerge,” she said. “That’s exciting because it tells us that there are these new playgrounds emerging that we simply haven’t paid much attention to before, and that there is still more to be explored.”

The study’s other authors are Sungwoo Sohn, Yujun Xie and Yeonwoong Jung, all from Yale.

####

For more information, please click here

Contacts:
William Weir
203-432-0105

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Download article:

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Materials/Metamaterials

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Ultra-thin memory storage device paves way for more powerful computing January 17th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project