Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Inorganic-organic halide perovskites for new photovoltaic technology

Abstract:
The perovskite metal halide materials, such as CH3NH3PbI3, have attracted wide interest in the field of photoelectric conversion, detecting and luminescence. As an emerging semiconductor, this type of material has distinctive advantages of high light absorption coefficient, long carrier lifetime, low defect density and exciton binding energy, and low fabrication cost. The energy conversion efficiency of the perovskite solar cell (PSCs) has been exceeding 22%, even higher than that of the multicrystalline silicon cell, implying its potential commercial application. In the development process of PSCs, Chinese scientists have made contributions in developing efficient hole transport material free PSCs, exploring new materials with photoelectric and luminescence properties, regulating the material fabrication, integrating large-area devices, investigating the stability issue of the cell.

Inorganic-organic halide perovskites for new photovoltaic technology

Beijing, China | Posted on November 6th, 2017

Here, Meng's group from Institute of Physics, Chinese Academy of Sciences, reviews the latest advance from the perspective of material structure, fabrication technology to the critical physics properties. Especially for the physics properties, the doping, defects, carriers, junction and electric field, ion transportation and their influence on the semiconductor properties have been discussed.

For the ternary perovskite, its carrier property is closely related to the self-doping; and the carrier control can also be realized in experiment by regulating the physics-chemistry process behind the material fabrication. In the meanwhile, impurity atoms could be an alternative for the carrier adjustment. Due to the p-type doping, a single heterojunction at the TiO2/perovskite interface was observed in the cell, where the heterojunction is mainly located in the perovskite region. Interestingly, no obvious junction was found at the perovskite/hole transporting layer interface, which implies that the cell may be not a p-i-n cell. For the defect properties, some works have been reported. The defect density of these low-temperature solution-processed perovskites is as low as 1015 cm-3, which thus contributes to the long carrier lifetime. Recently, significant ion transport in the material has been found, which would redistribute the doping and defect in the cell, thus affecting the photoelectric behavior and stability.

These physics properties play essential roles in the operation of the cell and need to be understood thoroughly. For the cell, the low stability is the key limitation to its further development, and the physics stability has the critical effect. It is believed that, with substantial effort toward developing new hybrid perovskite materials and new fabrication techniques, a reliable perovskite photovoltaic technology can be realized in the future.

####

About Science China Press
The National Science Review is the first comprehensive scholarly journal released in English in China that is aimed at linking the country's rapidly advancing community of scientists with the global frontiers of science and technology. The journal also aims to shine a worldwide spotlight on scientific research advances across China.

For more information, please click here

Contacts:
Qingbo Meng

Copyright © Science China Press

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

See the article:

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Physics

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Theory gives free rein to superconductivity at room temperature May 28th, 2018

Perovskites

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Possible Futures

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Discoveries

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Materials/Metamaterials

Relax, just break it July 20th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Energy

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Solar/Photovoltaic

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project