Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Electrostatic force takes charge in bioinspired polymers

Inspired by the principles of natural polymer synthesis, Illinois chemical and biomolecular engineering professor Charles Sing, left, and graduate students Jason Madinya and Tyler Lytle co-authored a study that found they could create new synthetic materials by tuning the electrostatic charge of polymer chains.
CREDIT
Photo by L. Brian Stauffer
Inspired by the principles of natural polymer synthesis, Illinois chemical and biomolecular engineering professor Charles Sing, left, and graduate students Jason Madinya and Tyler Lytle co-authored a study that found they could create new synthetic materials by tuning the electrostatic charge of polymer chains. CREDIT Photo by L. Brian Stauffer

Abstract:
Researchers at the University of Illinois and the University of Massachusetts, Amherst have taken the first steps toward gaining control over the self-assembly of synthetic materials in the same way that biology forms natural polymers. This advance could prove useful in designing new bioinspired, smart materials for applications ranging from drug delivery to sensing to remediation of environmental contaminants.

Electrostatic force takes charge in bioinspired polymers

Champaign, IL | Posted on November 2nd, 2017

Proteins, which are natural polymers, use amino acid building blocks to link together long molecular chains. The specific location of these building blocks, called monomers, within these chains creates sequences that dictate a polymer's structure and function. In the journal Nature Communications, the researchers describe how to utilize the concept of monomer sequencing to control polymer structure and function by taking advantage of a property present in both natural and synthetic polymers - electrostatic charge.

"Proteins encode information through a precise sequence of monomers. However, this precise control over sequence is much harder to control in synthetic polymers, so there has been a limit to the quality and amount of information that can be stored," said Charles Sing, a professor of chemical and biomolecular engineering at Illinois and a study co-author. "Instead, we can control the charge placement along the synthetic polymer chains to drive self-assembly processes."

"Our study focuses on a class of polymers, called coacervates, that separate like oil and water and form a gel-like substance," said Sarah Perry, a study co-author and University of Massachusetts, Amherst chemical engineering professor, as well as an Illinois alumna.

Through a series of experiments and computer simulations, the researchers found that the properties of the resulting charged gels can be tuned by changing the sequence of charges along the polymer chain.

"Manufacturers commonly use coacervates in cosmetics and food products to encapsulate flavors and additives, and as a way of controlling the 'feel' of the product," Sing said. "The challenge has been if they need to change the texture or the thickness, they would have to change the material being used."

Sing and Perry demonstrate that they can rearrange the structure of the polymer chains by tuning their charge to engineer the desired properties. "This is how biology makes the endless diversity of life with only a small number of molecular building blocks," Perry said. "We envision bringing this bioinspiration concept full circle by using coacervates in biomedical and environmental applications."

The results of this research open a tremendous number of opportunities to expand the diversity of polymers used and the scale of applications, the researchers said. "Currently, we are working with materials on the macro scale - things that we can see and touch," Sing said. "We hope to expand this concept into the realm of nanotechnology, as well."

###

The National Science Foundation and the U. of I. Graduate College supported this research.

####

For more information, please click here

Contacts:
Lois E Yoksoulian

217-244-2788

Charles Sing
217-244-6671;


Sarah Perry
413-545-6252

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The paper "Sequence and entropy-based control of complex coacervates" is available online and from the U. of I. News Bureau. DOI: 10.1038/s41467-017-01249-1E:

Related News Press

News and information

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Govt.-Legislation/Regulation/Funding/Policy

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Controlling chemical catalysts with sculpted light January 15th, 2021

Conductive nature in crystal structures revealed at magnification of 10 million times: University of Minnesota study opens up possibilities for new transparent materials that conduct electricity January 15th, 2021

Possible Futures

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

Nanocrystals that eradicate bacteria biofilm January 8th, 2021

Detecting COVID-19 antibodies in 10-12 seconds January 8th, 2021

Sensors

Nanomaterials researchers in Finland, the United States and China have created a color atlas for 466 unique varieties of single-walled carbon nanotubes. December 14th, 2020

An LED that can be integrated directly into computer chips: The advance could cut production costs and reduce the size of microelectronics for sensing and communication December 14th, 2020

Stretchable micro-supercapacitors to self-power wearable devices December 11th, 2020

Making 3-D Nanosuperconductors with DNA: Complex 3-D nanoscale architectures based on DNA self-assembly can conduct electricity without resistance and may provide a platform for fabricating quantum computing and sensing devices November 10th, 2020

Discoveries

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Scientists' discovery is paving the way for novel ultrafast quantum computers January 15th, 2021

Materials/Metamaterials

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Chemists invent shape-shifting nanomaterial with biomedical potential It converts from sheets to tubes and back in a controllable fashion January 13th, 2021

USTC develops ultrahigh-performance plasmonic metal-oxide materials January 11th, 2021

Stretching diamond for next-generation microelectronics January 5th, 2021

Announcements

Quantum Optimization: Computer scientist Yufei Ding receives NSF Early CAREER Award to advance efforts to improve quantum applications January 21st, 2021

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

CEA-Leti Reports Machine-Learning Breakthrough That Opens Way to Edge Learning: Article in Nature Electronics Details Method that Takes Advantage of RRAM Non-Idealities To Create Intelligent Systems that Have Potential Medical-Diagnostic Applications January 20th, 2021

Arrowhead Pharmaceuticals to Webcast Fiscal 2021 First Quarter Results January 20th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Bringing Atoms to a Standstill: NIST Miniaturizes Laser Cooling January January 21st, 2021

Scientists synthetize new material for high-performance supercapacitors January 19th, 2021

Quantum computers to study the functioning of the molecules of life: A team of theoretical physicists from the University of Trento has shown that it is possible to use quantum computers to simulate processes of great biological importance, such as changes in the shape of protein January 15th, 2021

Keeping the costs of superconducting magnets down using ultrasound: Scientists show ultrasonication is a cost-effective approach to enhance the properties of magnesium diboride superconductors January 15th, 2021

Environment

Phytoplankton disturbed by nanoparticles: Due to its antibacterial properties, nanosilver is used in a wide range of products from textiles to cosmetics; but nanosilver if present at high concentrations also disrupts the metabolism of algae that are essential for the aquatic food November 27th, 2020

Flash graphene rocks strategy for plastic waste: Rice University lab detours potential environmental hazard into useful material October 30th, 2020

New design principles for spin-based quantum materials: Criteria for designing targeted quantum materials could support Internet of Things devices and other resource-intensive technologies September 20th, 2020

Nano-diamond self-charging batteries could disrupt energy as we know it August 25th, 2020

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project