Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory

Schematic shows the configuration for structural phase transition on a molybdenum ditelluride monolayer (MoTe2, shown as yellow and blue spheres), which is anchored by a metal electrodes (top gate and ground). The ionic liquid covering the monolayer and electrodes enables a high density of electrons to populate the monolayer, leading to changes in the structural lattice from a hexagonal (2H) to monoclinic (1T') pattern.
CREDIT
Ying Wang/Berkeley Lab
Schematic shows the configuration for structural phase transition on a molybdenum ditelluride monolayer (MoTe2, shown as yellow and blue spheres), which is anchored by a metal electrodes (top gate and ground). The ionic liquid covering the monolayer and electrodes enables a high density of electrons to populate the monolayer, leading to changes in the structural lattice from a hexagonal (2H) to monoclinic (1T') pattern. CREDIT Ying Wang/Berkeley Lab

Abstract:
The same electrostatic charge that can make hair stand on end and attach balloons to clothing could be an efficient way to drive atomically thin electronic memory devices of the future, according to a new study led by researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab).

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory

Berkeley, CA | Posted on October 13th, 2017

In a study published today in the journal Nature, scientists have found a way to reversibly change the atomic structure of a 2-D material by injecting, or "doping," it with electrons. The process uses far less energy than current methods for changing the configuration of a material's structure.

"We show, for the first time, that it is possible to inject electrons to drive structural phase changes in materials," said study principal investigator Xiang Zhang, senior faculty scientist at Berkeley Lab's Materials Sciences Division and a professor at UC Berkeley. "By adding electrons into a material, the overall energy goes up and will tip off the balance, resulting in the atomic structure re-arranging to a new pattern that is more stable. Such electron doping-driven structural phase transitions at the 2-D limit is not only important in fundamental physics; it also opens the door for new electronic memory and low-power switching in the next generation of ultra-thin devices."

Switching a material's structural configuration from one phase to another is the fundamental, binary characteristic that underlies today's digital circuitry. Electronic components capable of this phase transition have shrunk down to paper-thin sizes, but they are still considered to be bulk, 3-D layers by scientists. By comparison, 2-D monolayer materials are composed of a single layer of atoms or molecules whose thickness is 100,000 times as small as a human hair.

"The idea of electron doping to alter a material's atomic structure is unique to 2-D materials, which are much more electrically tunable compared with 3-D bulk materials," said study co-lead author Jun Xiao, a graduate student in Zhang's lab.

The classic approach to driving the structural transition of materials involves heating to above 500 degrees Celsius. Such methods are energy-intensive and not feasible for practical applications. In addition, the excess heat can significantly reduce the life span of components in integrated circuits.

A number of research groups have also investigated the use of chemicals to alter the configuration of atoms in semiconductor materials, but that process is still difficult to control and has not been widely adopted by industry.

"Here we use electrostatic doping to control the atomic configuration of a two-dimensional material," said study co-lead author Ying Wang, another graduate student in Zhang's lab. "Compared to the use of chemicals, our method is reversible and free of impurities. It has greater potential for integration into the manufacturing of cell phones, computers and other electronic devices."

The researchers used molybdenum ditelluride (MoTe2), a typical 2-D semiconductor, and coated it with an ionic liquid (DEME-TFSI), which has an ultra-high capacitance, or ability to store electric charges. The layer of ionic liquid allowed the researchers to inject the semiconductor with electrons at a density of a hundred trillion to a quadrillion per square centimeter. It is an electron density that is one to two orders higher in magnitude than what could be achieved in 3-D bulk materials, the researchers said.

Through spectroscopic analysis, the researchers determined that the injection of electrons changed the atoms' arrangement of the molybdenum ditelluride from a hexagonal shape to one that is monoclinic, which has more of a slanted cuboid shape. Once the electrons were retracted, the crystal structure returned to its original hexagonal pattern, showing that the phase transition is reversible. Moreover, these two types of atom arrangements have very different symmetries, providing a large contrast for applications in optical components.

"Such an atomically thin device could have dual functions, serving simultaneously as optical or electrical transistors, and hence broaden the functionalities of the electronics used in our daily lives," said Wang.

###

This work was supported by DOE's Office of Science and by the National Science Foundation.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov .

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Sarah Yang

510-486-4575

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

2 Dimensional Materials

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Laboratories

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Possible Futures

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Chip Technology

Nanometrics to Announce Third Quarter Financial Results on October 30, 2018 October 10th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

UCI scientists push microscopy to sub-molecular resolution: Carbon monoxide used to measure electric forces in single chemical compound October 2nd, 2018

Machine learning helps improving photonic applications September 28th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Optical computing/Photonic computing

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

Machine learning helps improving photonic applications September 28th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

Discoveries

Researchers quickly harvest 2-D materials, bringing them closer to commercialization: Efficient method for making single-atom-thick, wafer-scale materials opens up opportunities in flexible electronics October 12th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Materials/Metamaterials

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene controls surface magnetism at room temperature October 8th, 2018

Unmasking corrosion to design better protective thin films for metals: Researchers from three universities team up to analyze oxide films at atomic level October 3rd, 2018

Fracture toughness tests confirm exceptional properties of Innovnano 2YSZ structural ceramic powder September 28th, 2018

Announcements

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1 Study of ARO-ANG3 October 15th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

TUBALL single wall carbon nanotubes: No ecotoxicity found, unlike other carbon nanotubes October 12th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Big award enables study of small surfaces: Rice U.'s Matt Jones wins Packard Fellowship to view nanoscale chemical reactions October 15th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

High-performance self-assembled catalyst for SOFC October 12th, 2018

Tracking a Killer: UCSB, UCSD and SBP researchers trace the complex and variable pathways to the deadly condition known as sepsis October 12th, 2018

Industrial

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

Carbon in color: First-ever colored thin films of nanotubes created: A method developed at Aalto University, Finland, can produce large quantities of pristine single-walled carbon nanotubes in select shades of the rainbow; the secret is a fine-tuned fabrication process -- and a s August 29th, 2018

Connecting the (Nano) Dots: NIST Says Big-Picture Thinking Can Advance Nanoparticle Manufacturing August 22nd, 2018

A colossal breakthrough for topological spintronics: BiSb expands the potential of topological insulators for ultra-low-power electronic devices August 2nd, 2018

Photonics/Optics/Lasers

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator October 9th, 2018

AIM Photonics is Unveiling Support for Datacom and Telecom Optical Bands with its New Silicon Photonics Process Design Kit (PDK): New Analog Photonics and SUNY PDK Enables Partnering Companies to Gain World-Class Technological Capabilities in O+C+L optical bands October 5th, 2018

Light makes Rice U. catalyst more effective: Halas lab details plasmonic effect that allows catalyst to work at lower energy October 5th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project