Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward

This is a schematic of the emission of entangled photon pairs from a quantum dot.
CREDIT
Sascha Kolatschek
This is a schematic of the emission of entangled photon pairs from a quantum dot. CREDIT Sascha Kolatschek

Abstract:
The potential for photon entanglement in quantum computing and communications has been known for decades. One of the issues impeding its immediate application is the fact that many photon entanglement platforms do not operate within the range used by most forms of telecommunication.

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward

Washington, DC | Posted on September 28th, 2017

An international team of researchers has started to unravel the mysteries of entangled photons, demonstrating a new nanoscale technique that uses semiconductor quantum dots to bend photons to the wavelengths used by today's popular C-band standards. They report their work this week in Applied Physics Letters, from AIP Publishing.

"We have demonstrated the emission of polarization-entangled photons from a quantum dot at 1550 nanometers for the first time ever," said Simone Luca Portalupi, one of the work's authors and a senior scientist at the Institute of Semiconductor Optics and Functional Interfaces at the University of Stuttgart. "We are now on the wavelength that can actually carry quantum communication over long distances with existing telecommunication technology."

The researchers used quantum dots created from an indium arsenide and gallium arsenide platform, producing pure single photons and entangled photons. Unlike parametric down-conversion techniques, quantum dots allow for photons to be emitted only one at a time and on demand, crucial properties for quantum computing. A distributed Bragg reflector, which is made from multiple layered materials and reflects over a wide spectrum, then directed the photons to a microscope objective, allowing them to be collected and measured.

Researchers and industry leaders have found that the C-band -- a specific range of infrared wavelengths -- has become an electromagnetic sweet spot in telecommunications. Photons traveling through both optical fibers and the atmosphere within this range experience significantly less absorption, making them perfect for relaying signals across long distances.

"The telecom C-band window has the absolute minimum absorption we can achieve for signal transmission," said Fabian Olbrich, another of the paper's authors. "As scientists have made discoveries, industry has improved technology, which has let scientists make more discoveries, and so now we have a standard that works very well and has low dispersion."

Most entangled photons originating from quantum dots, however, operate near 900 nanometers, closer to wavelengths we can see with the naked eye.

The researchers were impressed by the quality of the signal, Olbrich said. Other efforts to shift the emission wavelength of polarization-entangled photons of quantum dots toward the C-band tended to increase the exciton fine-structure splitting (FSS), a quantity that should be close to zero for entanglement generation. Olbrich's team reports their experiment experienced less than one-fifth as much FSS as other studies in the literature.

"The chance to find a quantum dot that is able to emit polarization-entangled photons with high fidelity is quite high for our specific study," Olbrich said.

With each successful experiment, the quantum communications community is seeing its field bend toward greater applicability in today's telecommunications industry. Researchers hope that one day, entangled photons will impact cryptography and secure satellite communications.

"The hard part now is to combine all the advantages of the system and fulfill prerequisites such as high photon indistinguishability, high temperature operation, increased photon flux and out coupling efficiency that would make them work," Olbrich said.

####

About American Institute of Physics
Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See http://apl.aip.org .

For more information, please click here

Contacts:
Julia Majors

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Polarization-entangled photons from an InGaAs-based quantum dot emitting in the telecom C-band," is authored by Fabian Olbrich, Jonatan Höschele, Markus Müller, Jan Kettler, Simone Luca Portalupi, Matthias Paul, Michael Jetter and Peter Michler. The article will appear in Applied Physics Letters Sept. 26, 2017 (DOI: 10.1063/1.4994145). After that date, it can be accessed at:

Related News Press

News and information

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Quantum Physics

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

A New Way to Measure Nearly Nothing: NIST prototype design uses ultracold trapped atoms to measure pressure October 22nd, 2018

Wireless/telecommunications/RF/Antennas/Microwaves

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

180 Degree Capital Corp. Announces New Portfolio Holdings – Airgain, Inc., EMCORE Corporation, Lantronix, Inc. and PDL BioPharma, Inc. October 12th, 2018

Quantum communication

2-D magnetism: Atom-thick platforms for energy, information and computing research: Scientists say the tiny 'spins' of electrons show potential to one day support next-generation innovations in many fields October 31st, 2018

Possible Futures

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Arrowhead Pharmaceuticals Presents Late-Breaking Preliminary Clinical Data on ARO-HBV at Liver Meeting® 2018 November 9th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Quantum Computing

IEDM - CEA-Leti Will Present 11 Papers and Host Workshop on Disruptive Technologies for Data Management November 7th, 2018

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

Tiny camera lens may help link quantum computers to network September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

Optical computing/Photonic computing

AIM Photonics Members Meeting Provides Key Updates on the Initiative’s Progress: Day-Long Engagement in Syracuse, NY, Sees Strong Attendance and Interest from Industry, Government, and Academic Partners November 2nd, 2018

Rice U. scientists form flat tellurium: Two-dimensional element shows promise for solar cells and other optoelectronics October 26th, 2018

Leti and Taiwanese National Applied Research Laboratories Announce Collaboration for Microelectronics Innovation: Collaboration Will Facilitate Scientific and Technological Exchanges in Microelectronics, Sharing Platforms and Encouraging PhD Student Exchanges October 23rd, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Discoveries

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Materials/Metamaterials

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

Physicists name and codify new field in nanotechnology: ‘electron quantum metamaterials:’ UC Riverside’s Nathaniel Gabor and colleague formulate a vision for the field in a perspective article November 5th, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Announcements

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

GLOBALFOUNDRIES, indie Semiconductor Deliver Performance-Enhanced Microcontrollers for Automotive Applications: 55nm LPx platform, with SST’s highly reliable embedded SuperFlash®, increases performance and energy efficiency for automotive applications November 13th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

Optimization of alloy materials: Diffusion processes in nano particles decoded November 13th, 2018

Unlocking the Secrets of Metal-Insulator Transitions: X-ray photon correlation spectroscopy at NSLS-II's CSX beamline used to understand electrical conductivity transitions in magnetite November 8th, 2018

WSU researchers develop new technique to understand biology at the nanoscale November 7th, 2018

Quantum Dots/Rods

Machine learning helps improving photonic applications September 28th, 2018

A Novel Graphene Quantum Dot Structure Takes the Cake August 24th, 2018

Individual quantum dots imaged in 3-D for first time February 28th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project