Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New quantum phenomena in graphene superlattices

This is an example of the Hofstadter butterfly phenomenon.
CREDIT
The University of Manchester
This is an example of the Hofstadter butterfly phenomenon. CREDIT The University of Manchester

Abstract:
A team of Graphene Flagship researchers led by the University of Manchester reported in the journal Science showing the first new type of quantum oscillation to be reported for thirty years. This occurs by applying a magnetic field and it is the first of its kind to be present at high temperature and on the mesoscale. This research also sheds light on the Hofstadter butterfly phenomenon.

New quantum phenomena in graphene superlattices

Manchester, UK | Posted on September 18th, 2017

Quantum theory is the study of physics at the atomic and sub atomic level. It quantises energy and momentum and shows how objects are characterised as both particles and waves. Quantum oscillations can be used to map the properties of new materials in the presence of a magnetic field. This paper shows how it is possible to tune the magnetic field applied to a heterostructure comprising of graphene and boron nitride to create a whole host of different electronic materials.

The superlattice, created in graphene by its exact placement with regards to a periodically arranged boron nitride layer, interacts with the magnetic field in such a way that it is possible to tune its oscillation to manufacture bands and gaps in its electronics structure - meaning that the magnetic field can be used to tune the materials to be metallic, semiconducting or conducting.

Andre Geim, a leading member of the team and the 2010 Nobel Laureate, says "Oscillatory quantum effects always present milestones in our understanding of materials properties. They are exceedingly rare. It is more than 30 years since a new type of quantum oscillation was reported." He added "Our oscillations stand out by their extreme robustness, happening under ambient conditions in easily accessible magnetic fields."

This work also sheds further light on Hofstadter's butterfly, a fractal pattern that describes the behaviour of electrons in a magnetic field, measured experimentally for the first time in 2013 using a graphene and boron-nitride heterostructure. In the original theoretical work on which Hofstadter's butterfly is based the electrons modelled to create the fractal pattern were treated as Bloch electrons (electrons that do not interact with one another and move within a periodic electric potential within a lattice). The research shown here illustrates how these complex fractal patterns can be viewed as Langmuir quantisation which is the quantisation of cyclotron orbits (taking what is normally thought of as a circular orbit and instead viewing it as linear)

Professor Vladimir Falko, Director of the National Graphene Institute commented "Our work helps to demystify the Hofstadter butterfly. The complex fractal structure of the Hofstadter butterfly spectrum can be understood as simple Landau quantisation in the sequence of new metals created by magnetic field."

Professor Bart van Wees, Head of the Physics of Nanodevices group at the Zernike Institute for Advanced Materials, Groningen, The Netherlands added "We have always considered quantum oscillations as very brittle, easily destroyed at higher temperatures but the authors have shown that these can now be observed at room temperature, or even higher. This is good news for possible new applications of these and other systems which are based on Van der Waals stacking of two-dimensional materials."

####

For more information, please click here

Contacts:
Sian Fogden

44-012-237-62418

Copyright © Graphene Flagship

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

'Memtransistor' brings world closer to brain-like computing: Combined memristor and transistor can process information and store memory with one device February 22nd, 2018

2 Dimensional Materials

Basque researchers turn light upside down February 23rd, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Diamonds show promise for spintronic devices: New experiments demonstrate the potential for diamond as a material for spintronics January 30th, 2018

Magnetism

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Fast-spinning spheres show nanoscale systems' secrets: Rice University lab demonstrates energetic properties of colloids in spinning magnetic field February 7th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Graphene/ Graphite

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Quantum Physics

New silicon chip for helping build quantum computers and securing our information February 8th, 2018

Physics

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Discoveries

Basque researchers turn light upside down February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Imaging individual flexible DNA 'building blocks' in 3-D: Berkeley Lab researchers generate first images of 129 DNA structures February 22nd, 2018

Materials/Metamaterials

Basque researchers turn light upside down February 23rd, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Announcements

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Basque researchers turn light upside down February 23rd, 2018

Stiffness matters February 23rd, 2018

Histology in 3-D: New staining method enables Nano-CT imaging of tissue samples February 22nd, 2018

Developing reliable quantum computers February 22nd, 2018

Quantum nanoscience

Quantum cocktail provides insights on memory control: Experiments based on atoms in a shaken artificial crystal offer insight that might help in the development of future data-storage devices January 26th, 2018

Moving nanoparticles using light and magnetic fields January 25th, 2018

Scientists reveal the fundamental limitation in the key material for solid-state lighting January 25th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project