Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bit data goes anti-skyrmions

These are anti-skyrmions on a racetrack.
CREDIT
MPI of Microstructure Physics
These are anti-skyrmions on a racetrack. CREDIT MPI of Microstructure Physics

Abstract:
Today's world, rapidly changing because of "big data", is encapsulated in trillions of tiny magnetic objects - magnetic bits - each of which stores one bit of data in magnetic disk drives. A group of scientists from the Max Planck Institutes in Halle and Dresden have discovered a new kind of magnetic nano-object in a novel material that could serve as a magnetic bit with cloaking properties to make a magnetic disk drive with no moving parts - a Racetrack Memory - a reality in the near future.

Bit data goes anti-skyrmions

Dresden, Germany | Posted on September 1st, 2017

Most digital data is stored in the cloud as magnetic bits within massive numbers of magnetic disk drives. Over the past several decades these magnetic bits have shrunk by many orders of magnitude, reaching limits where the boundaries of these magnetic regions can have special properties. In some special materials these boundaries - "magnetic domain walls" - can be described as being topological. What this means is that these walls can be thought of as having a special magical cloak - what is referred to by scientists as "topological protection". An important consequence is that such magnetic walls are more stable to perturbations than similar magnetic bits without topological protection that are formed in conventional magnetic materials. Thus, these "topological" magnetic objects could be especially useful for storing "1"s and "0"s, the basic elements of digital data.

One such object is a "magnetic skyrmion" which is a tiny magnetic region, perhaps tens to hundreds of atoms wide, separated from a surrounding magnetic region by a chiral domain wall. Until recently only one type of skyrmion has been found in which it is surrounded by a chiral domain wall that takes the same form in all directions. But there have been predictions of several other types of skyrmions that were not yet observed. Now in a paper published in Nature*, scientists from Prof. Stuart Parkin's NISE department at the Max Planck Institute for Microstructure Physics in Halle, Germany, have found a second class of skyrmions, what are called "anti-skyrmions", in materials synthesized in Prof. Claudia Felser's Solid State Chemistry Department at the Max Planck Institute for CPFS, Dresden, Germany. The scientists from Halle and Dresden have found these tiny magnetic objects in a special class of versatile magnetic compounds called Heusler compounds that Claudia Felser and her colleagues have explored extensively over the past 20 years. Of these Heusler compounds, a tiny subset have just the right crystal symmetry to allow for the possibility of forming anti-skyrmions but not skyrmions. Using a highly sensitive transmission electron microscope at the Max Planck Institute for Microstructure Physics, Halle, that was specially modified to allow for the detection of tiny magnetic moments, anti-skyrmions were created and detected over a wide range of temperatures and magnetic fields. Most importantly, anti-skyrmions, both in ordered arrays and as isolated objects, could be seen even at room temperature and in zero magnetic fields.

The special cloaking properties of skyrmions makes them of great interest for a radically new form of solid-state memory - the Racetrack Memory - that was proposed by Stuart Parkin a decade ago. In Racetrack Memory digital data is encoded within magnetic domain walls that are packed closely within nanoscopic magnetic wires. One of the unique features of Racetrack Memory, which is distinct from all other memories, is that the walls are moved around the nanowires themselves using recent discoveries in spin-orbitronics. Very short pulses of current move all the domain walls backwards and forwards along the nano-wires. The walls - the magnetic bits - can be read and written by devices incorporated directly into the nanowires themselves, thereby eliminating any mechanical parts. Topologically protected magnetic walls are very promising for Racetrack Memory.

Thus, anti-skyrmions could be coming to Racetrack Memory soon! Going even beyond anti-skyrmions the next goal is the realization of a third class of skyrmions - antiferromagnetic skyrmions - which are tiny magnetic objects that actually have no net magnetic moment. They are magnetically almost invisible but have unique properties that make them of great interest.

####

For more information, please click here

Contacts:
grid Rothe

Copyright © Max Planck Institute for Chemical Physics of Solids

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

Physics

Searching for errors in the quantum world September 21st, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Skyrmions

Magnetic antiparticles offer new horizons for information technologies: Computer simulations reveal new behavior of antiskyrmions in gradually increased electric currents August 21st, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Possible Futures

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Chip Technology

Researchers managed to prevent the disappearing of quantum information September 14th, 2018

New devices based on rust could reduce excess heat in computers: Physicists explore long-distance information transmission in antiferromagnetic iron oxide September 14th, 2018

New photonic chip promises more robust quantum computers September 14th, 2018

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Memory Technology

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

A molecular switch at the edge of graphene July 27th, 2018

Magnetic skyrmions: Not the only ones of their class: Jülich researchers discover a new type of magnetic particle-like object for data storage devices of the future June 28th, 2018

Nanoelectronics

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Laser sintering optimized for printed electronics: New study sheds (laser) light on the best means of laying down thin-film circuitry September 13th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project