Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Rice University chemists make laser-induced graphene from wood

Scanning electron microscope images show pristine pine at top and laser-induced graphene on pine (P-LIG) produced at Rice University at bottom. The scale bar is about 500 micrometers. (Credit: Tour Group/Rice University)
Scanning electron microscope images show pristine pine at top and laser-induced graphene on pine (P-LIG) produced at Rice University at bottom. The scale bar is about 500 micrometers. (Credit: Tour Group/Rice University)

Abstract:
Rice University scientists have made wood into an electrical conductor by turning its surface into graphene.



A video shows two planks of laser-induced graphene on pine fashioned into catalysts for electrolysis at Rice University. Bubbles from the electrode on the left are hydrogen, and on the right, oxygen. (Credit: Tour Group/Rice University)

Rice University chemists make laser-induced graphene from wood

Houston, TX | Posted on July 31st, 2017

Rice chemist James Tour and his colleagues used a laser to blacken a thin film pattern onto a block of pine. The pattern is laser-induced graphene (LIG), a form of the atom-thin carbon material discovered at Rice in 2014.

"It's a union of the archaic with the newest nanomaterial into a single composite structure," Tour said.

The discovery is detailed this month in Advanced Materials.

Previous iterations of LIG were made by heating the surface of a sheet of polyimide, an inexpensive plastic, with a laser. Rather than a flat sheet of hexagonal carbon atoms, LIG is a foam of graphene sheets with one edge attached to the underlying surface and chemically active edges exposed to the air.

Not just any polyimide would produce LIG, and some woods are preferred over others, Tour said. The research team led by Rice graduate students Ruquan Ye and Yieu Chyan tried birch and oak, but found that pine's cross-linked lignocellulose structure made it better for the production of high-quality graphene than woods with a lower lignin content. Lignin is the complex organic polymer that forms rigid cell walls in wood.

Ye said turning wood into graphene opens new avenues for the synthesis of LIG from nonpolyimide materials. "For some applications, such as three-dimensional graphene printing, polyimide may not be an ideal substrate," he said. "In addition, wood is abundant and renewable."

As with polyimide, the process takes place with a standard industrial laser at room temperature and pressure and in an inert argon or hydrogen atmosphere. Without oxygen, heat from the laser doesn't burn the pine but transforms the surface into wrinkled flakes of graphene foam bound to the wood surface. Changing the laser power also changed the chemical composition and thermal stability of the resulting LIG. At 70 percent power, the laser produced the highest quality of what they dubbed "P-LIG," where the P stands for “pine.”

The lab took its discovery a step further by turning P-LIG into electrodes for splitting water into hydrogen and oxygen and supercapacitors for energy storage. For the former, they deposited layers of cobalt and phosphorus or nickel and iron onto P-LIG to make a pair of electrocatalysts with high surface areas that proved to be durable and effective.

Depositing polyaniline onto P-LIG turned it into an energy-storing supercapacitor that had usable performance metrics, Tour said.

"There are more applications to explore," Ye said. "For example, we could use P-LIG in the integration of solar energy for photosynthesis. We believe this discovery will inspire scientists to think about how we could engineer the natural resources that surround us into better-functioning materials."

Tour saw a more immediate environmental benefit from biodegradable electronics.

"Graphene is a thin sheet of a naturally occurring mineral, graphite, so we would be sending it back to the ground from which it came along with the wood platform instead of to a landfill full of electronics parts."

Co-authors of the paper are Rice graduate students Jibo Zhang and Yilun Li; Xiao Han, who has a complimentary appointment at Rice and is a graduate student at Beihang University, Beijing, China; and Rice research scientist Carter Kittrell. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The Air Force Office of Scientific Research Multidisciplinary University Research Initiative and the NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment supported the research.

####

About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview .

Follow Rice News and Media Relations via Twitter @RiceUNews

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Rice U. chemists create 3-D printed graphene foam:

Zap! Graphene is bad news for bacteria:

Gas gives laser-induced graphene super properties:

Tour Group:

Wiess School of Natural Sciences:

Related News Press

Graphene/ Graphite

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Graphene Flagship start-up Bedimensional closes a second €10 million investment round February 10th, 2023

Rice turns asphaltene into graphene for composites: ‘Flashed’ byproduct of crude oil could bolster materials, polymer inks November 18th, 2022

News and information

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Thin films

Understanding the mechanism of non-uniform formation of diamond film on tools: Paving the way to a dry process with less environmental impact March 24th, 2023

New study introduces the best graphite films: The work by Distinguished Professor Feng Ding at UNIST has been published in the October 2022 issue of Nature Nanotechnology November 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023

Possible Futures

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Discoveries

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Materials/Metamaterials

Nanobiotechnology: How Nanomaterials Can Solve Biological and Medical Problems April 14th, 2023

New Developments in Biosensor Technology: From Nanomaterials to Cancer Detection April 14th, 2023

Diamond cut precision: University of Illinois to develop diamond sensors for neutron experiment and quantum information science April 14th, 2023

Graphene grows – and we can see it March 24th, 2023

Announcements

Study demonstrates that Ta2NiSe5 is not an excitonic insulator international research team settles the decade-long debate around the microscopic origin of symmetry breaking in the bulk crystal May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers at Purdue discover superconductive images are actually 3D and disorder-driven fractals May 12th, 2023

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Novel design perovskite electrochemical cell for light-emission and light-detection May 12th, 2023

Military

With new experimental method, researchers probe spin structure in 2D materials for first time: By observing spin structure in “magic-angle” graphene, a team of scientists led by Brown University researchers have found a workaround for a long-standing roadblock in the field of two May 12th, 2023

New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023

Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023

Semiconductor lattice marries electrons and magnetic moments March 24th, 2023

Photonics/Optics/Lasers

Laser direct writing of Ga2O3/liquid metal-based flexible humidity sensors May 12th, 2023

Breakthrough in the optical properties of MXenes - two-dimensional heterostructures provide new ideas May 12th, 2023

Optica Publishing Group announces launch of Optica Quantum: New, online-only Gold Open Access journal to rapidly disseminate high-impact research results across many sectors of quantum information science and technology May 12th, 2023

Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate April 14th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project