Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon displays quantum effects

They played a key role in demonstrating the unusual behaviour of carbon: Tim Schleif (left) and Joel Mieres Perez (right) © RUB, Marquard
They played a key role in demonstrating the unusual behaviour of carbon: Tim Schleif (left) and Joel Mieres Perez (right) © RUB, Marquard

Abstract:
Chemists at Ruhr-Universität Bochum have found evidence that carbon atoms cannot only behave like particles but also like waves. This quantum-mechanical property is well-known for light particles such as electrons or hydrogen atoms. However, researchers have only rarely observed the wave-particle duality for heavy atoms, such as carbon. The team led by Prof Dr Wolfram Sander and Tim Schleif from the Chair for Organic Chemistry II together with Prof Dr Weston Thatcher Borden, University of North Texas, reports in the journal "Angewandte Chemie".

Carbon displays quantum effects

Bochum, Germany | Posted on July 13th, 2017

"Our result is one of few examples showing that carbon atoms can display quantum effects," says Sander. Specifically, the researchers observed that carbon atoms can tunnel. They thus overcome an energetic barrier, although they do not actually possess enough energy to do that.

Rarely observed for heavy particles

Wolfram Sander explains the paradox: "It's as though a tiger has left his cage without jumping over the fence, which is much too high for him. But he still gets out." This is only possible if he behaves like a wave, but not if he behaves like a particle. The probability of an object being able to tunnel depends on its mass. The phenomenon can, for instance, be observed much more easily for light electrons than for relatively heavy carbon atoms.

The researchers investigated the tunnel reaction using the Cope rearrangement, a chemical reaction that has been known for almost 80 years. The starting material for the reaction, a hydrocarbon compound, is identical to the product molecule. The same chemical compound thus exists before and after the reaction. However, the bonds between the carbon atoms change during the process.

In their experiment, the Bochum-based researchers marked one of the carbon atoms in the molecule: They replaced the hydrogen atom bonded to it with the hydrogen isotope deuterium, a heavier version of hydrogen. Molecules before and after the Cope rearrangement differed in terms of the distribution of the deuterium. Due to these different distributions, both molecular forms had slightly different energies.

Reaction shouldn't actually take place

At room temperature, this difference has little effect; due to the plentiful supply of thermal energy in the surrounding area, both forms occur equally frequently. However, at very low temperatures under ten Kelvin, one molecule form is significantly preferred due to the energy difference. When transitioning from room temperature to extremely low temperatures, the balance has to move from an equal distribution of both forms to an uneven distribution.

This transition cannot, however, occur in the classic way - since, when rearranging from one form to the other, an energy barrier has to be overcome, although the molecule itself does not have the energy for this and the cold environment is also unable to provide it. Although the new balance should not occur in the classic way, the researchers were nevertheless able to demonstrate it in the experiment. Their conclusion: the Cope rearrangement at extremely low temperatures can only be explained by a tunnel effect. They thus provided experimental evidence for a prediction made by Weston Borden over five years ago based on theoretical studies.

Solvents influence ability to tunnel

At Ruhr-Universität, Wolfram Sander undertakes research in the cluster of excellence Ruhr Explores Solvation, where he concerns himself with the interactions of solvents and dissolved molecules. "It is known that solvents influence the ability to tunnel," says the chemist. "However, so far it has not been understood how they do that."

####

For more information, please click here

Contacts:
Wolfram Sander

49-234-322-4593

Copyright © Ruhr-Universität Bochum

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Quantum Physics

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Chemistry

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Density gradient ultracentrifugation for colloidal nanostructures separation and investigation June 5th, 2018

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements: Scientists use approach analogous to facial-recognition technology to track atomic-scale rearrangements relevant to phase changes, catalytic reactions, and more May 31st, 2018

Northwestern researchers predict materials to stabilize record-high capacity lithium-ion battery: Advancement could pave the way for less expensive, longer-lasting batteries for electric vehicles May 29th, 2018

Possible Futures

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

JPK talks with Dr Frank Lafont, Director of the BioImaging Center Lille (BICeL) about the use of the NanoWizard® AFM together with fluorescence microscopy in the study of living cells June 19th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Discoveries

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Materials/Metamaterials

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Nickel ferrite promotes capacity and cycle stability of lithium-sulfur battery June 13th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Announcements

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Nanobiotix Publishes Positive Phase 2/3 Data For Nanomedicine in Soft Tissue Cancer (Webcast June 22) June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Research partnerships

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum nanoscience

Carbon nanotube optics poised to provide pathway to optical-based quantum cryptography and quantum computing: Researchers are exploring enhanced potential of carbon nanotubes for unique applications June 18th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Detecting the birth and death of a phonon June 7th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project