Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Development of low-dimensional nanomaterials could revolutionize future technologies

Some of the inorganic semiconductors under study by Vela and coworkers.
CREDIT
Ames Laboratory
Some of the inorganic semiconductors under study by Vela and coworkers. CREDIT Ames Laboratory

Abstract:
Javier Vela, scientist at the U.S. Department of Energy's Ames Laboratory, believes improvements in computer processors, TV displays and solar cells will come from scientific advancements in the synthesis of low-dimensional nanomaterials.

Development of low-dimensional nanomaterials could revolutionize future technologies

Ames, IA | Posted on June 15th, 2017

Ames Laboratory scientists are known for their expertise in the synthesis and manufacturing of materials of different types, according to Vela, who is also an Iowa State University associate professor of chemistry. In many instances, those new materials are made in bulk form, which means micrometers to centimeters in size. Vela's group is working with tiny, nanometer, or one billionth of a meter sized, nanocrystals.

"We're trying to find out what happens with materials when we go to lower particle sizes, will the materials be enhanced or negatively impacted, or will we find properties that weren't expected," Vela said. "Our goal is to broaden the science of low-dimensional nanomaterials." In an invited paper published in Chemistry of Materials entitled, "Synthetic Development of Low Dimensional Materials", Vela and coauthors Long Men, Miles White, Himashi Andaraarachchi, and Bryan Rosales discussed highlights of some of their most recent work on the synthesis of low dimensional materials.

One of those topics was advancements in the synthesis of germanium-based core-shell nanocrystals. Vela says industry is very interested in semiconducting nanocrystal-based technologies for applications such as solar cells.

Small particle size can affect many things from transport properties (how well a nanocrystal conducts heat and electricity) to optical properties (how strong it interacts with light, absorbs light and emits light). This is especially true in photovoltaic solar cells "Let's say you're using a semiconductor material to make a solar device, there's often different performance when solar cells are made from bulk materials as opposed to when they are made with nanomaterials. Nanomaterials interact with light differently; they absorb it better. That's one way you can manipulate devices and fine tune their performance or power conversion efficiency," said Vela.

Beyond solar cells, Vela says there's tremendous interest in using nanocrystals in quantum dot television and computer displays, optical devices like LEDs (light-emitting diodes), biological imaging, and telecommunications.

He says there are many challenges in this area because depending upon the quality of the nanocrystals used, you can see different emission properties, which can affect the purity of light. "Ultimately the size of the nanocrystals being used can make a huge difference in the cleanliness or crispness of colors in TV and computer displays," said Vela. "Television and computer technology is a multibillion dollar business worldwide, so you can see the potential value our understanding of properties of nanocrystals could bring to these technologies."

In the paper, Vela's group also discussed advancements made in the study of synthesis and spectroscopic characterization of organolead halide perovskites, which Vela says are some of the most promising semiconductors for solar cells because of their low cost and easier processability. He adds photovoltaics made of these materials now reach power conversion efficiencies of greater than 22 percent. Vela's research in this area has focused on mixed-halide perovskites. He says his group has discovered these materials exhibit interesting chemical and photo physical properties that people hadn't realized before, and now they are trying to better understand the correlation between the structure and chemical composition of perovskites and how they behave in solar cells. "One of our goals is to use what we've learned to help lower the cost of solar cells and produce them more reliably and readily," Vela said.

In addition, Vela's group is studying how to replace lead in traditional organolead halide perovskites with something less toxic, like germanium. "In principle, this is an area that should be much better known, but it's not," said Vela. "When we've been able to substitute germanium for lead, we have been able to produce a lighter perovskite, which he says could positively impact the automotive industry, for example.

"This could have great implications for transportation applications where you don't want a lot of lead because it's so heavy," said Vela. Going forward Vela says his group's focus will be on advancing the science in low-dimensional materials.

"We're not working with well-known materials, but the newest; the most recently discovered," Vela said. "And every time we can advance the science we're one step closer to opportunities for more commercialization, more production, more manufacturing and more jobs in the U.S."

###

This work was supported by the U.S. Department of Energy's Office of Science.

####

About Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Steve Karsjen

515-294-5643

Copyright © Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

2 Dimensional Materials

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Controlling forces between atoms, molecules, promising for Ď2-D hyperbolicí materials April 4th, 2017

Laboratories

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

NRELís Advanced Atomic Layer Deposition Enables Lithium-Ion Battery Technology: May 10th, 2017

Perovskites

Ultra-stable perovskite solar cell remains stable for more than a year June 1st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Discoveries

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

New carbon nitride material coupled with ruthenium enhances visible-light CO2 reduction in water June 15th, 2017

Automotive/Transportation

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar SarıÁiftÁi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

Scientists Design Molecular System for Artificial Photosynthesis: System is designed to mimic key functions of the photosynthetic center in green plants to convert solar energy into chemical energy stored by hydrogen fuel June 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project