Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Development of low-dimensional nanomaterials could revolutionize future technologies

Some of the inorganic semiconductors under study by Vela and coworkers.
CREDIT
Ames Laboratory
Some of the inorganic semiconductors under study by Vela and coworkers. CREDIT Ames Laboratory

Abstract:
Javier Vela, scientist at the U.S. Department of Energy's Ames Laboratory, believes improvements in computer processors, TV displays and solar cells will come from scientific advancements in the synthesis of low-dimensional nanomaterials.

Development of low-dimensional nanomaterials could revolutionize future technologies

Ames, IA | Posted on June 15th, 2017

Ames Laboratory scientists are known for their expertise in the synthesis and manufacturing of materials of different types, according to Vela, who is also an Iowa State University associate professor of chemistry. In many instances, those new materials are made in bulk form, which means micrometers to centimeters in size. Vela's group is working with tiny, nanometer, or one billionth of a meter sized, nanocrystals.

"We're trying to find out what happens with materials when we go to lower particle sizes, will the materials be enhanced or negatively impacted, or will we find properties that weren't expected," Vela said. "Our goal is to broaden the science of low-dimensional nanomaterials." In an invited paper published in Chemistry of Materials entitled, "Synthetic Development of Low Dimensional Materials", Vela and coauthors Long Men, Miles White, Himashi Andaraarachchi, and Bryan Rosales discussed highlights of some of their most recent work on the synthesis of low dimensional materials.

One of those topics was advancements in the synthesis of germanium-based core-shell nanocrystals. Vela says industry is very interested in semiconducting nanocrystal-based technologies for applications such as solar cells.

Small particle size can affect many things from transport properties (how well a nanocrystal conducts heat and electricity) to optical properties (how strong it interacts with light, absorbs light and emits light). This is especially true in photovoltaic solar cells "Let's say you're using a semiconductor material to make a solar device, there's often different performance when solar cells are made from bulk materials as opposed to when they are made with nanomaterials. Nanomaterials interact with light differently; they absorb it better. That's one way you can manipulate devices and fine tune their performance or power conversion efficiency," said Vela.

Beyond solar cells, Vela says there's tremendous interest in using nanocrystals in quantum dot television and computer displays, optical devices like LEDs (light-emitting diodes), biological imaging, and telecommunications.

He says there are many challenges in this area because depending upon the quality of the nanocrystals used, you can see different emission properties, which can affect the purity of light. "Ultimately the size of the nanocrystals being used can make a huge difference in the cleanliness or crispness of colors in TV and computer displays," said Vela. "Television and computer technology is a multibillion dollar business worldwide, so you can see the potential value our understanding of properties of nanocrystals could bring to these technologies."

In the paper, Vela's group also discussed advancements made in the study of synthesis and spectroscopic characterization of organolead halide perovskites, which Vela says are some of the most promising semiconductors for solar cells because of their low cost and easier processability. He adds photovoltaics made of these materials now reach power conversion efficiencies of greater than 22 percent. Vela's research in this area has focused on mixed-halide perovskites. He says his group has discovered these materials exhibit interesting chemical and photo physical properties that people hadn't realized before, and now they are trying to better understand the correlation between the structure and chemical composition of perovskites and how they behave in solar cells. "One of our goals is to use what we've learned to help lower the cost of solar cells and produce them more reliably and readily," Vela said.

In addition, Vela's group is studying how to replace lead in traditional organolead halide perovskites with something less toxic, like germanium. "In principle, this is an area that should be much better known, but it's not," said Vela. "When we've been able to substitute germanium for lead, we have been able to produce a lighter perovskite, which he says could positively impact the automotive industry, for example.

"This could have great implications for transportation applications where you don't want a lot of lead because it's so heavy," said Vela. Going forward Vela says his group's focus will be on advancing the science in low-dimensional materials.

"We're not working with well-known materials, but the newest; the most recently discovered," Vela said. "And every time we can advance the science we're one step closer to opportunities for more commercialization, more production, more manufacturing and more jobs in the U.S."

###

This work was supported by the U.S. Department of Energy's Office of Science.

####

About Ames Laboratory
Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Steve Karsjen

515-294-5643

Copyright © Ames Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

2 Dimensional Materials

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Individual impurity atoms detectable in graphene April 18th, 2018

Atomically thin light-emitting device opens the possibility for 'invisible' displays March 26th, 2018

Laboratories

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Artificial intelligence accelerates discovery of metallic glass: Machine learning algorithms pinpoint new materials 200 times faster than previously possible April 13th, 2018

Doing the nano-shimmy: New device modulates light and amplifies tiny signals April 12th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Perovskites

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Double perovskites in environmentally friendly solar cells: Long electron-hole diffusion length in high-quality lead-free double perovskite films April 6th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Possible Futures

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Discoveries

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Materials/Metamaterials

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Getting electrons to move in a semiconductor: Gallium oxide shows high electron mobility, making it promising for better and cheaper devices April 24th, 2018

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Announcements

The first PE blown films with nanotubes hit the Chinese market April 26th, 2018

Arbe Robotics Selects GLOBALFOUNDRIES for its High-Resolution Imaging Radar to Enable Safety for Autonomous Cars: Arbe Robotics’ proprietary chipset leverages GF’s 22FDX® technology to deliver industry’s first real-time 4D imaging radar for level 4 and 5 autonomous driving April 26th, 2018

Watching nanomaterials form in 4D: Novel technology allows researchers to see dynamic reactions as they happen at the nanoscale April 26th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Getting a better look at living cells April 25th, 2018

Graphene origami as a mechanically tunable plasmonic structure for infrared detection April 25th, 2018

Nuclear radiation detecting device could lead to new homeland security tool: New device can detect gamma rays and identify radioactive isotopes April 25th, 2018

Energy

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

Light 'relaxes' crystal to boost solar cell efficiency: Rice, Los Alamos discovery advances case for perovskite-based solar cells April 6th, 2018

Automotive/Transportation

Arbe Robotics Selects GLOBALFOUNDRIES for its High-Resolution Imaging Radar to Enable Safety for Autonomous Cars: Arbe Robotics’ proprietary chipset leverages GF’s 22FDX® technology to deliver industry’s first real-time 4D imaging radar for level 4 and 5 autonomous driving April 26th, 2018

HTA to Present European Strategy for Competitive Micro- and Nanotechnologies & Smart Systems: Special Event in Brussels on April 24 Gathers Research Institutes’ CEOs, European Commissioners and Key European Industrials April 17th, 2018

CAP-XX Develops Industry’s First 3 Volt Thin Prismatic Supercapacitors: Provides peak power support to 3V coin cell batteries and eliminates need for 2.7V LDO regulator for less expensive, smaller, more energy-efficient designs with extended battery life April 11th, 2018

Mapping battery materials with atomic precision: Berkeley Lab researchers map the atoms of battery materials and explored how composition affects structure March 8th, 2018

Solar/Photovoltaic

Organic solar cells reach record efficiency, benchmark for commercialization April 23rd, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

High efficiency solar power conversion allowed by a novel composite material: A composite thin film developed at INRS improves significantly solar cells' power conversion efficiency April 10th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project