Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy

The colorful scattering pattern at left reveals molecular level structural information about the layered smectic phase of a liquid crystal material. The inner arcs indicate that the molecules are arrayed in ordered layers with regular spacing, while the outer arcs indicate there is still liquid-like mobility within the layers. The graph (top, right) represents inelastic x-ray scattering measurements from this smectic phase. Each peak (pink, orange, purple) represents a unique vibrational motion moving through the material, where the two "bumps" that make up each peak represent the energy gained or lost by the vibration. The purple and orange vibrations match the frequency of sound waves while the third, pink, vibration is linked to the tilt of the molecules (bottom, right). The out-of-phase rocking back-and-forth of these molecules matches the frequency of infrared light (heat).
The colorful scattering pattern at left reveals molecular level structural information about the layered smectic phase of a liquid crystal material. The inner arcs indicate that the molecules are arrayed in ordered layers with regular spacing, while the outer arcs indicate there is still liquid-like mobility within the layers. The graph (top, right) represents inelastic x-ray scattering measurements from this smectic phase. Each peak (pink, orange, purple) represents a unique vibrational motion moving through the material, where the two "bumps" that make up each peak represent the energy gained or lost by the vibration. The purple and orange vibrations match the frequency of sound waves while the third, pink, vibration is linked to the tilt of the molecules (bottom, right). The out-of-phase rocking back-and-forth of these molecules matches the frequency of infrared light (heat).

Abstract:
Scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have developed a new way to track dynamic molecular features in soft materials, including the high-frequency molecular vibrations that transmit waves of heat, sound, and other forms of energy. Controlling these vibrational waves in soft materials such as polymers or liquid crystal compounds could lead to a range of energy-inspired innovations-from thermal and acoustic insulators, to ways to convert waste heat into electricity, or light into mechanical motion.

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy

Upton, NY | Posted on June 7th, 2017

In a paper just published in Nano Letters, the scientists describe using the newly constructed inelastic x-ray scattering (IXS) beamline at the National Synchrotron Light Source II (NSLS-II), which has unprecedented energy resolution, to monitor the propagation of vibrations through a liquid crystal compound in three different phases. Their findings show that the nanoscale structural changes that occur with increasing temperature-as the liquid crystals become less ordered-dramatically disrupt the flow of vibrational waves. Thus choosing or changing the "phase," or arrangement of molecules, could control the vibrations and the flow of energy.

"By tuning the structure, we can change the dynamic properties of this material," said Brookhaven physicist Dima Bolmatov, the paper's lead author.

The technique could also be used to study dynamic processes in other soft systems such as biological membranes or any kind of complex fluid.

"For example, we could look at how the lipid molecules in a cell membrane cooperate with each other to create tiny porous regions where even smaller molecules, like oxygen or carbon dioxide, can pass through-to see how gas exchange operates in gills and lungs," Bolmatov said.

The ability to track such fast dynamic properties would not be possible without the unique capabilities of NSLS-II-a DOE Office of Science User Facility at Brookhaven Lab. NSLS-II produces extremely bright x-rays for studies in a wide range of scientific fields.

At the IXS beamline, scientists bombard samples with these x-rays and measure the energy they give up or gain with a precision to within two thousandths of an electron volt, as well as the angle at which they scatter off the sample-even at very small angles.

"The energy exchange tells us how much energy it took to make some molecules vibrate in a wave-like motion. The scattering angle probes the vibrations propagating over different length scales inside the sample-from nearly a single molecule to tens of nanometers. The new IXS beamline at NSLS-II can resolve those length scales with unprecedented precision," said Yong Cai, the lead scientist of the IXS beamline.

"These two parameters-the scattering angle and the energy-have never before been so well measured in soft materials. So the technical properties of this beamline enable us to precisely locate the vibrations and track their propagation in different directions over different length scales-even in materials that lack a well-ordered solid structure," he added.

In the liquid crystal study, the Brookhaven Lab scientists and their collaborators at Kent State University and the University at Albany made measurements at three different temperatures as the material went from an ordered, crystalline phase through transitions to a less-ordered "smectic" state, and finally an "isotropic" liquid. They easily detected the propagation of vibrational waves through the most ordered phase, and showed that the emergence of disorder "killed" the propagation of low energy "acoustic shear" vibrations. Acoustic shear vibrations are associated with a compression of the molecules in a direction perpendicular to the direction of propagation.

"Knowing where the dynamic boundary is-between the material behaving like an ordered solid and a disordered soft material-gives us a way to control the transmission of energy at the nanoscale," Bolmatov said.

In the "smectic" phase, the scientists also observed a vibration that was associated instead with molecular tilt. This type of vibration can interact with light and absorb it because the terahertz frequency of the vibrations matches the frequency of infrared light or heat waves. So changing the material properties can control the way these forms of energy move through the material. Those changes can be achieved by changing the temperature of the material, as was done in this experiment, but also by applying external electric or magnetic fields, Bolmatov said.

This paves the way for new so-called phononic or optomechanical applications, where sound or light is coupled with the mechanical vibrations. Such coupling makes it possible to control a material by applying external light and sound or vice versa.

"We're all familiar with applications using the optical properties of liquid crystals in display screens," Bolmatov said. "We've found new properties that can be controlled or manipulated for new kinds of applications."

The team will continue studies of soft materials at IXS, including planned experiments with block copolymers, nanoparticle assemblies, lipid membranes, and other liquid crystals over the summer.

"The IXS beamline is also now opened to external users-including scientists interested in these and other soft materials and biological processes," said Cai.

The research team included Dima Bolmatov, Mikhail Zhernenkov, Alexey Suvorov, Ronald Pindak, Yong Cai, and Alessandro Cunsolo of NSLS-II, and Lewis Sharpnack, Deña M. Agra-Kooijman of Kent State University, and Satyendra Kumar of the University at Albany .

This research was supported by the DOE Office of Science.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at http://www.bnl.gov/newsroom , follow Brookhaven Lab on Twitter, http://twitter.com/BrookhavenLab , or find us on Facebook, http://www.facebook.com/BrookhavenLab/

For more information, please click here

Contacts:
Karen McNulty Walsh

(631) 344-8350,

or Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Scientific paper: "Emergent Optical Phononic Modes upon Nanoscale Mesogenic Phase Transitions":

Related News Press

News and information

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Laboratories

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Making quantum 'waves' in ultrathin materials: Study co-led by Berkeley Lab reveals how wavelike plasmons could power up a new class of sensing and photochemical technologies at the nanoscale May 15th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

2D oxide flakes pick up surprise electrical properties: Rice University lab detects piezoelectric effects in nanosheets due to defects May 7th, 2020

Imaging

Eavesdropping on single molecules with light by replaying the chatter May 15th, 2020

Govt.-Legislation/Regulation/Funding/Policy

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Electrons break rotational symmetry in exotic low-temp superconductor: Scientists previously observed this peculiar behavior in other materials whose ability to conduct electricity without energy loss cannot be explained by standard theoretical frameworks May 19th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

Possible Futures

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Discoveries

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

MSU scientists solve half-century-old magnesium dimer mystery May 22nd, 2020

Researchers review advances in 3D printing of high-entropy alloys: SUTD collaborates with universities in Singapore and China to shine light on HEA manufacturing processes and inspire further research in this emerging field May 22nd, 2020

A stitch in time: How a quantum physicist invented new code from old tricks: Error suppression opens pathway to universal quantum computing May 22nd, 2020

Announcements

An EPiQS Pursuit: Physicist Andrea Young is chosen to receive an Experimental Investigator award from the Moore Foundation May 28th, 2020

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Study finds electrical fields can throw a curveball: Particle-scale phenomenon akin to the swerving of a curveball could allow selective separation of suspended nanomaterials May 26th, 2020

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Researchers demonstrate transport of mechanical energy, even through damaged pathways: Topological pump can provide stability for communication technologies May 22nd, 2020

Tools

Molecules with a spin on a topological insulator: a hybrid approach to magnetic topological states of matter May 1st, 2020

Argonne scientists fashion new class of X-ray detector: New perovskite-based detectors can sense X-rays over a broad energy range. April 24th, 2020

New boron material of high hardness created by plasma chemical vapor deposition: The goal is material that approaches a diamond in hardness and can survive extreme pressure, temperature and corrosive environments April 17th, 2020

Two is better than one: Scientists fit two co-catalysts on one nanosheet for better water purification April 16th, 2020

Energy

Oil & gas and automotive sectors will benefit from durable polymers with graphene nanotubes May 14th, 2020

Transporting energy through a single molecular nanowire: Why single wires are superior to bundles May 8th, 2020

Scientists have created new nanocomposite from gold and titanium oxide: Scientists use lasers and gold particles to turn titanium oxide into nanocomposite for photocatalysts May 8th, 2020

Water-splitting module a source of perpetual energy: ‘Artificial leaf’ concept inspires Rice University research into solar-powered fuel production May 4th, 2020

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Visualization of functional components to characterize optimal composite electrodes May 22nd, 2020

Nexeon Appoints New Chairman May 18th, 2020

2D oxide flakes pick up surprise electrical properties: Rice University lab detects piezoelectric effects in nanosheets due to defects May 7th, 2020

A new study published on the cover of Science could bolster the development of batteries, fuel cells, 3D printing technologies and more May 1st, 2020

Research partnerships

Surrey reveals its implantable biosensor that operates without batteries May 22nd, 2020

Scientists use light to accelerate supercurrents, access forbidden light, quantum world May 21st, 2020

Observation of intervalley transitions can boost valleytronic science and technology: UC Riverside-led research shows these transitions can emit light May 15th, 2020

Scientists break the link between a quantum material's spin and orbital states: The advance opens a path toward a new generation of logic and memory devices based on orbitronics that could be 10,000 times faster than today's May 15th, 2020

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project