Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Plasmonics could bring sustainable society, desalination tech

Plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis. (Purdue University file image/Alberto Naldoni)
Plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis. (Purdue University file image/Alberto Naldoni)

Abstract:
The emerging field of plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis.

Plasmonics could bring sustainable society, desalination tech

West Lafayette, IN | Posted on June 2nd, 2017

Plasmonic materials contain features, patterns or elements that enable unprecedented control of light by harnessing clouds of electrons called surface plasmons.

“Plasmonics offers the ultimate control over light and photochemistry, with the help of metallic nanostructures capable of concentrating electromagnetic energy into nanoscale volumes,” said Vladimir M. Shalaev, Purdue University’s Bob and Anne Burnett Distinguished Professor in Electrical and Computer Engineering. “It may have a transformative impact on the way we will drive, manipulate, enhance, and monitor chemical processes in the future.”

The potential for practical applications is discussed in a commentary to appear on Friday (June 2) in the Perspectives section of Science magazine. The article was written by visiting scientist Alberto Naldoni; Shalaev; and Mark Brongersma, a professor in the Department of Materials Science and Engineering at Stanford University.

Surface plasmons and “resonant nanostructures” might be harnessed for the ultra-efficient manufacture of chemicals and fuels. One example is the potential use of these nanostructures combined with semiconductor devices that harvest light to perform catalysis.

When semiconductors are illuminated, electrons are said to be “excited,” moving from one energy level, or band, to another and leaving behind "holes.” Surface plasmons are groups of electrons that collectively become excited and then “decay,” or lose energy, re-emitting photons or highly energetic, “hot,” electrons and holes. These hot electrons can be used to drive chemical reactions.

Innovations in plasmonics could make it possible to explore new types of chemistry that are typically only possible at high temperatures and pressures. The surface plasmons cause “local heating,” which holds promise for applications such as chemical separation and distillation for industrial processes, and saltwater desalination.

“The world is facing a freshwater crisis, and cheap, efficient production of freshwater from saltwater would mean an end to this global challenge,” Shalaev said. “Plasmonic nanoparticles can be self-assembled inside the nanochannels of a membrane that floats on water. Upon irradiation, the plasmonic device absorbs more than 96 percent of the solar spectrum and focuses the absorbed energy in nanoscale water volumes, enabling steam generation and efficient desalination.”

Plasmonics also might be combined with DNA to produce custom-made “three-dimensional metamolecules” and light-driven molecular robots for applications in chemistry, technology and medicine.

“Such plasmonic machines could be implemented for carrying out smart operations such as transport of molecules and information processing,” he said.

Scaling up plasmonic chemistry to the industrial level would require development of new alternative plasmonic materials, the use of “metasurfaces” and flexible nanophotonic platforms.

“The transition to a clean and sustainable society is already taking place,” Shalaev said. “Plasmonics can help accelerate this changeover by enabling, manipulating, enhancing, and monitoring chemical processes with atomic-scale precision and control.”

####

For more information, please click here

Contacts:
Writer: Emil Venere, 765-494-4709,

Source: Vladimir Shalaev, 765-494-9855,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Chemistry

Russian physicists obtained data on particles self-organization in ultracold dusty plasma March 29th, 2019

Chemicals induce dipoles to damp plasmons: Rice University-led study finds molecules alter gold nanoparticles' electronic properties March 22nd, 2019

Converting biomass by applying mechanical force Nanoscientists discover new mechanism to cleave cellulose effectively and in an environmentally friendly way March 15th, 2019

New blueprint for understanding, predicting and optimizing complex nanoparticles: Guidelines have the potential to transform the fields of optoelectronics, bio-imaging and energy harvesting March 1st, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Plasmonics

Chemicals induce dipoles to damp plasmons: Rice University-led study finds molecules alter gold nanoparticles' electronic properties March 22nd, 2019

Possible Futures

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Discoveries

A light-activated remote control for cells April 17th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

Announcements

A light-activated remote control for cells April 17th, 2019

NEXUS 2019: Global Summit on Energy Materials and Green Nanotechnology April 16th, 2019

Arrowhead Pharmaceuticals Receives FDA Clearance to Begin Phase 2/3 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease April 15th, 2019

New microscopy method provides more details about nanocomposites April 12th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A light-activated remote control for cells April 17th, 2019

Oregon scientists drill into white graphene to create artificial atoms: Patterned on a microchip and working in ambient conditions, the atoms could lead to rapid advancements in new quantum-based technology April 12th, 2019

2D gold quantum dots are atomically tunable with nanotubes April 11th, 2019

'Nanobodies' from alpacas could help bring CAR T-cell therapy to solid tumors: Unusually small antibodies, targeted to the tumor micro-environment, curb melanoma and colon cancer in mouse models April 11th, 2019

Water

New method to reduce uranium concentration in contaminated water March 18th, 2019

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

Laser-induced graphene gets tough, with help: Rice University lab combines conductive foam with other materials for capable new composites February 12th, 2019

A powerful catalyst for electrolysis of water that could help harness renewable energy January 25th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project