Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Plasmonics could bring sustainable society, desalination tech

Plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis. (Purdue University file image/Alberto Naldoni)
Plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis. (Purdue University file image/Alberto Naldoni)

Abstract:
The emerging field of plasmonics could bring advances in chemical manufacturing, usher in new clean and sustainable technologies and desalination systems to avert a future global water crisis.

Plasmonics could bring sustainable society, desalination tech

West Lafayette, IN | Posted on June 2nd, 2017

Plasmonic materials contain features, patterns or elements that enable unprecedented control of light by harnessing clouds of electrons called surface plasmons.

“Plasmonics offers the ultimate control over light and photochemistry, with the help of metallic nanostructures capable of concentrating electromagnetic energy into nanoscale volumes,” said Vladimir M. Shalaev, Purdue University’s Bob and Anne Burnett Distinguished Professor in Electrical and Computer Engineering. “It may have a transformative impact on the way we will drive, manipulate, enhance, and monitor chemical processes in the future.”

The potential for practical applications is discussed in a commentary to appear on Friday (June 2) in the Perspectives section of Science magazine. The article was written by visiting scientist Alberto Naldoni; Shalaev; and Mark Brongersma, a professor in the Department of Materials Science and Engineering at Stanford University.

Surface plasmons and “resonant nanostructures” might be harnessed for the ultra-efficient manufacture of chemicals and fuels. One example is the potential use of these nanostructures combined with semiconductor devices that harvest light to perform catalysis.

When semiconductors are illuminated, electrons are said to be “excited,” moving from one energy level, or band, to another and leaving behind "holes.” Surface plasmons are groups of electrons that collectively become excited and then “decay,” or lose energy, re-emitting photons or highly energetic, “hot,” electrons and holes. These hot electrons can be used to drive chemical reactions.

Innovations in plasmonics could make it possible to explore new types of chemistry that are typically only possible at high temperatures and pressures. The surface plasmons cause “local heating,” which holds promise for applications such as chemical separation and distillation for industrial processes, and saltwater desalination.

“The world is facing a freshwater crisis, and cheap, efficient production of freshwater from saltwater would mean an end to this global challenge,” Shalaev said. “Plasmonic nanoparticles can be self-assembled inside the nanochannels of a membrane that floats on water. Upon irradiation, the plasmonic device absorbs more than 96 percent of the solar spectrum and focuses the absorbed energy in nanoscale water volumes, enabling steam generation and efficient desalination.”

Plasmonics also might be combined with DNA to produce custom-made “three-dimensional metamolecules” and light-driven molecular robots for applications in chemistry, technology and medicine.

“Such plasmonic machines could be implemented for carrying out smart operations such as transport of molecules and information processing,” he said.

Scaling up plasmonic chemistry to the industrial level would require development of new alternative plasmonic materials, the use of “metasurfaces” and flexible nanophotonic platforms.

“The transition to a clean and sustainable society is already taking place,” Shalaev said. “Plasmonics can help accelerate this changeover by enabling, manipulating, enhancing, and monitoring chemical processes with atomic-scale precision and control.”

####

For more information, please click here

Contacts:
Writer: Emil Venere, 765-494-4709,

Source: Vladimir Shalaev, 765-494-9855,

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Plasmonics

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Possible Futures

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

GLOBALFOUNDRIES Demonstrates Industry-Leading 112G Technology for Next-Generation Connectivity Solutions: High bandwidth, low power SerDes IP portfolio enables ‘connected intelligence’ in data centers and networking applications November 15th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Discoveries

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Counterfeits and product piracy can be prevented by security features, such as printed 3-D microstructures: Forgeries and product piracy are detrimental to society and industry -- 3-D microstructures can increase security -- KIT researchers develop innovative fluorescent 3-D stru November 15th, 2017

Water

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Bacteria-coated nanofiber electrodes clean pollutants in wastewater July 1st, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project