Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested

Abstract:
In the recent past ZnO has emerged as a promising alternative to Si and GaN in devices like light-emitting diodes (LEDs), photodetectors, and optically pumped lasers for the UV region1-3. ZnO has several special properties such as direct wide bandgap (~3.37eV)4, radiation resistance, high adsorption capacity, high exciton energy (~60meV)4, high mechanical and thermal stabilities, and transparency in the visible range of the electromagnetic radiation4-6. In recent times, one-dimensional (1-D) nanostructures of ZnO have attracted considerable attention of researchers, because of its unique properties (such as controllable shape and size)7-10. A variety of 1-D nanostructures of ZnO, such as nanostructures7, nanowires (NWs)8, nanorods (NRs)9, nanoparticles10, spirals11, nanoneedle12, and nanocombs13 can be grown by different synthesis techniques7-13. Among these 1-D nanostructures, NRs and NWs are the most popular and commonly used structures of ZnO, for different applications. The ZnO-NRs can be grown by a variety of techniques like sol-gel method14, atomic layer deposition (ALD)15, thermal evaporation16, electrodeposition17, spray pyrolysis18, hydrothermal9, and chemical vapor deposition19. Most of these growth techniques are complex and require high growth temperatures (600-1000C)12, 16. The hydrothermal method has attracted considerable interest because of its simplicity and low-temperature processing9, 20-23. Different nanostructures of ZnO such as nanoflowers21, nano-crystals22, and nanopencils23 could be grown by hydrothermal techniques. In the past decade, a lot of work has been done on ZnO-NR-based devices like optically pumped lasers24, field effect transistors25, and biological and chemical sensors etc26. Among these, ZnO-NR-based UV detectors and optical switches have been the focus of wide studies 27, 28.

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested

Singapore | Posted on May 26th, 2017

In recent times, many groups have reported the UV detection properties of ZnO thin films and ZnO nanostructures-based devices28-30. Li et al. reported Au/ZnO NR array-based UV photodetectors (UV-PDs) with good sensitivity (contrast ratio ~ 4.7)30. They have grown ZnO-NR arrays on F-doped SnO2 (FTO) substrates by hydrothermal synthesis. Humayun et al. reported a ZnO nanostructure decorated microgap electrodes UV sensor. They have compared the UV sensing properties of Au/Ti/ZnO thin film and Au/Ti/ZnO NR array deposited in selective areas of the microgap electrodes spacing31. They concluded that the fabricated devices could be used for low power miniaturized devices having rapid response and reproducibility31. Witkowski et al. have reported UV detector properties of ZnO-NRs grown on quartz substrates by the hydrothermal method. They have fabricated ohmic contacts of Ti/Au on ZnO-NRs and their detector showed a sensitivity of 20 mW/m2 upon UV illumination32. Zhou et al. reported Pt/ZnO-NR and Pt/modified ZnO-NR based Schottky UV detectors. They have used different seed layers and metal oxide (MgZnO, MgO, and Al-doped ZnO) modifying layer materials. They reported that the ZnO-NRs UV-PD, which was grown on MgZnO seed layer and without oxide material-coating, demonstrated bigger responsivity and a larger detectivity than PDs with a ZnO seed layer33. Liu et al. have reported UV detectors based on the vertically aligned ZnO micro/nanowires on graphene, which showed high responsivity of 1.62 A W?1 per volt34. Nie et al. have reported monolayer graphene (MLG) film/ZnO NR Schottky UV detectors with quick response of millisecond rise time/fall times35. Dang et al. have reported ZnO nanostructure/graphene (Gr) based UV detectors with high responsivity (RI ~ 3 105 A W?1)36.

Although there have been several works that reported on the UV-sensing properties using ZnO NRs, there are only a few reports on the UV-sensing of ZnO-NRs (grown by the hydrothermal-method) at a low-voltage.

The main focus of this work is to examine the UV-sensing characteristics of Ag/ZnO-NRs Schottky devices at forward applied bias over the range 0 V to 1 V.

The results show that these devices could be useful for cost-effective and low-voltage UV detection applications.

###

Additional co-authors of this paper include Dr. Shaivalini Singh, International Research Professor, Department of Electronic Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do South Korea and Professor S. Jit, Associate Professor, Department of Electronics Engineering, Indian Institute of Technology, BHU, Varanasi, India.

The corresponding author is Professor Si-Hyun Park, Department of Electronic Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do South Korea, .

####

For more information, please click here

Contacts:
Chin Wanying

65-646-65775

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Possible Futures

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

Sensors

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Research partnerships

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project