Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested

Abstract:
In the recent past ZnO has emerged as a promising alternative to Si and GaN in devices like light-emitting diodes (LEDs), photodetectors, and optically pumped lasers for the UV region1-3. ZnO has several special properties such as direct wide bandgap (~3.37eV)4, radiation resistance, high adsorption capacity, high exciton energy (~60meV)4, high mechanical and thermal stabilities, and transparency in the visible range of the electromagnetic radiation4-6. In recent times, one-dimensional (1-D) nanostructures of ZnO have attracted considerable attention of researchers, because of its unique properties (such as controllable shape and size)7-10. A variety of 1-D nanostructures of ZnO, such as nanostructures7, nanowires (NWs)8, nanorods (NRs)9, nanoparticles10, spirals11, nanoneedle12, and nanocombs13 can be grown by different synthesis techniques7-13. Among these 1-D nanostructures, NRs and NWs are the most popular and commonly used structures of ZnO, for different applications. The ZnO-NRs can be grown by a variety of techniques like sol-gel method14, atomic layer deposition (ALD)15, thermal evaporation16, electrodeposition17, spray pyrolysis18, hydrothermal9, and chemical vapor deposition19. Most of these growth techniques are complex and require high growth temperatures (600-1000°C)12, 16. The hydrothermal method has attracted considerable interest because of its simplicity and low-temperature processing9, 20-23. Different nanostructures of ZnO such as nanoflowers21, nano-crystals22, and nanopencils23 could be grown by hydrothermal techniques. In the past decade, a lot of work has been done on ZnO-NR-based devices like optically pumped lasers24, field effect transistors25, and biological and chemical sensors etc26. Among these, ZnO-NR-based UV detectors and optical switches have been the focus of wide studies 27, 28.

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested

Singapore | Posted on May 26th, 2017

In recent times, many groups have reported the UV detection properties of ZnO thin films and ZnO nanostructures-based devices28-30. Li et al. reported Au/ZnO NR array-based UV photodetectors (UV-PDs) with good sensitivity (contrast ratio ~ 4.7)30. They have grown ZnO-NR arrays on F-doped SnO2 (FTO) substrates by hydrothermal synthesis. Humayun et al. reported a ZnO nanostructure decorated microgap electrodes UV sensor. They have compared the UV sensing properties of Au/Ti/ZnO thin film and Au/Ti/ZnO NR array deposited in selective areas of the microgap electrodes spacing31. They concluded that the fabricated devices could be used for low power miniaturized devices having rapid response and reproducibility31. Witkowski et al. have reported UV detector properties of ZnO-NRs grown on quartz substrates by the hydrothermal method. They have fabricated ohmic contacts of Ti/Au on ZnO-NRs and their detector showed a sensitivity of 20 mW/m2 upon UV illumination32. Zhou et al. reported Pt/ZnO-NR and Pt/modified ZnO-NR based Schottky UV detectors. They have used different seed layers and metal oxide (MgZnO, MgO, and Al-doped ZnO) modifying layer materials. They reported that the ZnO-NRs UV-PD, which was grown on MgZnO seed layer and without oxide material-coating, demonstrated bigger responsivity and a larger detectivity than PDs with a ZnO seed layer33. Liu et al. have reported UV detectors based on the vertically aligned ZnO micro/nanowires on graphene, which showed high responsivity of 1.62 A W?1 per volt34. Nie et al. have reported monolayer graphene (MLG) film/ZnO NR Schottky UV detectors with quick response of millisecond rise time/fall times35. Dang et al. have reported ZnO nanostructure/graphene (Gr) based UV detectors with high responsivity (RI ~ 3 × 105 A W?1)36.

Although there have been several works that reported on the UV-sensing properties using ZnO NRs, there are only a few reports on the UV-sensing of ZnO-NRs (grown by the hydrothermal-method) at a low-voltage.

The main focus of this work is to examine the UV-sensing characteristics of Ag/ZnO-NRs Schottky devices at forward applied bias over the range 0 V to 1 V.

The results show that these devices could be useful for cost-effective and low-voltage UV detection applications.

###

Additional co-authors of this paper include Dr. Shaivalini Singh, International Research Professor, Department of Electronic Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do South Korea and Professor S. Jit, Associate Professor, Department of Electronics Engineering, Indian Institute of Technology, BHU, Varanasi, India.

The corresponding author is Professor Si-Hyun Park, Department of Electronic Engineering, Yeungnam University, Gyeongsan-si, Gyeongsangbuk-do South Korea, .

####

For more information, please click here

Contacts:
Chin Wanying

65-646-65775

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Possible Futures

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

Touchy nanotubes work better when clean: Rice, Swansea scientists show that decontaminating nanotubes can simplify nanoscale devices January 4th, 2018

Paving the way for a non-electric battery to store solar energy: UMass Amherst scientists say a polymer chain organized like a string of Christmas lights assists energy storage December 22nd, 2017

Nanotubes go with the flow to penetrate brain tissue: Rice University scientists, engineers develop microfluidic devices, microelectrodes for gentle implantation December 19th, 2017

Sensors

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Engineers develop flexible, water-repellent graphene circuits for washable electronics January 24th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Discoveries

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Research partnerships

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Nanowire LED Innovator Aledia Announces €30 ($36M) Million Series-C Financing: Intel Capital Joins Existing Investors to Commercialize Certain Nanowire-LED Technologies for Mobile Displays January 29th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project