Home > Press > Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative
![]() |
Rice University chemist Matteo Pasquali shows a spool of fiber made of carbon nanotubes. Rice has joined the Department of Energy's Next Generation Machines: Enabling Technologies initiative and will work to increase the conductivity of the fiber for use in electric motors. (Credit: Jeff Fitlow/Rice University) |
Abstract:
Rice University scientists who developed conductive fibers made entirely of carbon nanotubes will enhance their invention with the aid of a grant from the Department of Energy.
The grant for $1 million is part of the agency's Next Generation Machines: Enabling Technologies initiative. It will help Rice Professor Matteo Pasquali and his colleagues improve on the nanotube fibers they introduced in 2013.
The grant is one of 13 awarded by the agency to improve the efficiency of electric motor components through the development of wide bandgap semiconductors, advanced magnetic materials, aggressive cooling techniques and improved conductors, especially for wind, solar, electric vehicle and battery applications.
The fibers boast high strength and conductivity and far better flexibility than metal wires. They have been investigated for use as conductive links in damaged hearts, as brain implants and for data and low-power applications. Because they are manufactured via a scalable wet-spinning process, Pasquali said they could be used in large-scale applications.
Pasquali, Rice Professor Junichiro Kono and colleagues at the University of Maryland and Dexmat, a Houston company founded by Rice alumni, will work to double the conductivity of their fiber for use in lightweight motors and generators. Meeting that goal will require a specific conductivity 33 percent better than aluminum at 150 degrees Celsius (302 degrees Fahrenheit), according to their proposal.
The researchers anticipate that will yield major savings on weight, and thus fuel economy, for cars and aerospace applications.
"Our carbon nanotube fiber technology is already at the leading edge for such new applications as medical electronics, wearables and electronic textiles," Pasquali said. "With conductivity improvements of 20 to 30 percent, we can greatly expand the application range to include metal wire replacement for mobile applications."
Pasquali is a professor of chemical and biomolecular engineering, of materials science and nanoengineering, and of chemistry and chair of Rice's Department of Chemistry. Kono is a professor of electrical and computer engineering, of physics and astronomy and of materials science and nanoengineering.
####
About Rice University
Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation’s top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,879 undergraduates and 2,861 graduate students, Rice’s undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger’s Personal Finance. To read “What they’re saying about Rice,” go to http://tinyurl.com/RiceUniversityoverview
Follow Rice News and Media Relations via Twitter @RiceUNews
For more information, please click here
Contacts:
Jeff Falk
713-348-6775
Mike Williams
713-348-6728
Copyright © Rice University
If you have a comment, please Contact us.Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.
Related Links |
New nanotech fiber: Robust handling, shocking performance:
Complex Flows of Complex Fluids (Pasquali group):
Department of Energy announcement:
Related News Press |
News and information
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Possible Futures
New experiment translates quantum information between technologies in an important step for the quantum internet March 24th, 2023
Graphene grows – and we can see it March 24th, 2023
HKUMed invents a novel two-dimensional (2D) ultrasound-responsive antibacterial nano-sheets to effectively address bone tissue infection March 24th, 2023
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Nanotubes/Buckyballs/Fullerenes/Nanorods
Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022
Buckyballs on gold are less exotic than graphene July 22nd, 2022
Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022
Announcements
Robot caterpillar demonstrates new approach to locomotion for soft robotics March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Light meets deep learning: computing fast enough for next-gen AI March 24th, 2023
Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023
Energy
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage
Bilayer PET/PVDF substrate-reinforced solid polymer electrolyte improves solid-state lithium metal battery performance March 24th, 2023
Novel microscope developed to design better high-performance batteries: Innovation gives researchers inside view of how batteries work February 10th, 2023
Make them thin enough, and antiferroelectric materials become ferroelectric February 10th, 2023
Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records
Optical switching at record speeds opens door for ultrafast, light-based electronics and computers: March 24th, 2023
Semiconductor lattice marries electrons and magnetic moments March 24th, 2023
Solar/Photovoltaic
A universal HCl-assistant powder-to-powder strategy for preparing lead-free perovskites March 24th, 2023
Stability of perovskite solar cells reaches next milestone January 27th, 2023
New method addresses problem with perovskite solar cells: NREL researchers provide growth approach that boosts efficiency, stability December 29th, 2022
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |