Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials

A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources. This graphic depicts “quantum emitters,” in red. (Purdue University image/Zubin Jacob)
A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources. This graphic depicts “quantum emitters,” in red. (Purdue University image/Zubin Jacob)

Abstract:
ABSTRACT

Super-Coulombic atom–atom interactions in hyperbolic media

Cristian L. Cortes1,2 & Zubin Jacob1,2

1 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4. 2Birck Nanotechnology Center and Purdue Quantum Center, School of Electrical and Computer Engineering, Purdue University, 1205 West State Street, West Lafayette, Indiana 47906, USA. Correspondence and requests for materials should be addressed to C.L.C. (email: or to Z.J. (email:

Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.

Controlling forces between atoms, molecules, promising for ‘2-D hyperbolic’ materials

West Lafayette, IN | Posted on April 4th, 2017

A new approach to control forces and interactions between atoms and molecules, such as those employed by geckos to climb vertical surfaces, could bring advances in new materials for developing quantum light sources.

“Closely spaced atoms and molecules in our environment are constantly interacting, attracting and repelling each other,” said Zubin Jacob, an assistant professor of electrical and computer engineering at Purdue University. “Such interactions ultimately enable a myriad of phenomena, such as the sticky pads on gecko feet, as well as photosynthesis.”

Typically, these interactions occur when atoms and molecules are between 1 to 10 nanometers apart, or roughly 1/10,000th the width of a human hair.

“These include Van der Waals forces that take place between atoms and molecules only when they are very close together. The fact that they always require extremely short separation distances makes them difficult to control. This poses a major obstacle to exploit them for practical applications,” he said.

For brief periods of time atoms are said to possess “fluctuating dipoles” because their positive and negative charges are momentarily separated. The dipoles from numerous atoms and molecules sometimes interact with each other, and these dipole-dipole interactions are the basis for Van der Waals and other forces between the closely-spaced atoms and molecules.

The researchers have demonstrated that these dipole-dipole interactions are fundamentally altered inside so-called two-dimensional materials, such as hexagonal boron nitride and black phosphorous, materials with a thickness consisting of only a few atomic layers. They also have shown that it’s possible to achieve the dipole-dipole interactions even when the atoms and molecules are relatively distant, with a separation approaching one micron, or 100 times farther apart then would normally be required. This greater distance represents the potential for the practical application of the phenomenon for optical sources.

Findings are detailed in a paper published earlier this year in the journal Nature Communications. The paper was authored by doctoral student Cristian L. Cortes and Jacob.

“Our main goal was trying to understand whether it’s possible to control and manipulate these sorts of interactions,” Cortes said. “What we found was that by carefully engineering material properties, it is possible to significantly alter the strength and spatial range of these interactions. We found that so-called hyperbolic materials actually allow very long-range interactions unlike any other conventional material.”

Dipole-dipole interactions also cause many fluorescent atoms and molecules to emit light in a synchronized manner. Ordinarily, fluorescent molecules emit light in random and spontaneous flashes. However, materials might be engineered to mediate interactions so that the emission becomes synchronized, flashing in unison, and increasing light output dramatically in a phenomenon called super-radiance.

The hyperbolic two-dimensional materials are engineered to induce this super-radiance between fluorescent quantum emitters placed far apart.

“When they are interacting through these materials they can get locked in with each other like two pendulums synchronized perfectly,” Jacob said.

The materials are said to be “strongly interacting” due to the long-range dipole-dipole effect.

The “long-range” interactions could make possible new types of light sources that exploit super-radiance. Another challenging goal is to build quantum simulators using a network of interacting emitters to mimic “Coulomb interactions” or “spin interactions” between electrons in a material.

Although the Nature Communications paper focuses on theory, the researchers also suggested several experimental methods to validate the theory. They are performing an experiment using hyperbolic 2-D materials at the Birck Nanotechnology Center in Purdue’s Discovery Park.

Jacob recently received a National Science Foundation Faculty Early Career Development (CAREER) award to support the research. The award provides $461,877 for research over five years.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Source: Zubin Jacob
765-494-3514

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

2 Dimensional Materials

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Optical computing/Photonic computing

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Quantum communications bend to our needs: By changing the wavelengths of entangled photons to those used in telecommunications, researchers see quantum technology take a major leap forward September 28th, 2017

Discoveries

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Materials/Metamaterials

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Photonics/Optics/Lasers

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project