Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed

TEM (tunneling electron microscope) image of a carbon nanotube decorated with platinum clusters (bright color).
CREDIT
Aalto University
TEM (tunneling electron microscope) image of a carbon nanotube decorated with platinum clusters (bright color). CREDIT Aalto University

Abstract:
Platinum is a very expensive metal and it is therefore one of the bottlenecks hindering the growth of renewable energy. Platinum is used as the catalyst in electrolysers that store electric energy as chemical compounds, and it also plays an important role in fuel cells, catalytic converters and many chemical processes used in industry.

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed

Aalto, Finland | Posted on March 24th, 2017

A group of Aalto University researchers led by professors Tanja Kallio and Kari Laasonen has developed a manufacturing method for electrocatalysts that only uses one hundredth of the amount of platinum generally used in commercial products. The activity achieved using the new material is similar to that of commercial electrocatalysts. The method is based on the special characteristics of carbon nanotubes.

'When platinum is electrodeposited on the surface of carbon nanotubes, it forms particles consisting of a couple of atoms. On other materials, such as graphene, platinum forms larger nanoparticles', Tanja Kallio explains.

'We believe this is because the carbon atoms of the curved surface are in a strained state, which makes them prone to stabilising platinum on the surface of the nanotube. This ensures that the platinum atoms form small and catalytically active particles. Our modelling showed that the more strained the carbon bonds are, the better the stabilisation of the platinum. Smaller tubes are more curved, which makes the strain greater, so the diameter of the nanotubes is also important.'

One third of the price

Electrolysers store electrical energy in the form of hydrogen bond energy. In practice, this mechanism is used to store fluctuating energy, such as wind energy, and balance the difference between demand and production. Since the electrocatalyst forms approximately one third of the price of the electrolyser, reducing the amount of platinum needed would make the process significantly less expensive.

'In addition to the price of platinum, the availability of the metal is also a problem. Platinum is on the EU list of critical raw materials, which means that its use is problematic either due to its scarceness or due to geopolitical problems. This is why the EU is aiming to reduce the use of platinum', Kallio says and emphasises that so far the functionality of the electrocatalyst developed at Aalto University has only been proven in laboratory conditions.

'In small-scale conditions and at room temperature, the electrocatalyst is stable and usable for a long time. The next step is to increase the scale of production and test the functionality of the electrocatalyst in practical applications, which are often carried out at a higher temperature.'

####

For more information, please click here

Contacts:
Tanja Kallio

358-505-637-567

Professor Kari Laasonen (modelling)
tel. +358 40 557 0044

Copyright © Aalto University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research results have just been published in the scientific journal ACS Catalysis. Link to the article::

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Chemistry

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Sandia develops math techniques to improve computational efficiency in quantum chemistry May 5th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Possible Futures

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Materials/Metamaterials

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

Discovery of new transparent thin film material could improve electronics and solar cells: Conductivity is highest-ever for thin film oxide semiconductor material May 6th, 2017

CCNY physicists demonstrate photonic hypercrystals for control of light-matter interaction May 5th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Automotive/Transportation

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

Self-healing tech charges up performance for silicon-containing battery anodes May 15th, 2017

UnitySC Announces Wafer Thinning Inspection System; Win from Power Semiconductor IDM for Automotive: Leading IDM Selects New 4See Series Automated Defect Inspection Platform for Power Semiconductor Automotive Applications May 11th, 2017

Fuel Cells

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project