Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption

This is an illustration of a silicon photonic micro-disk modulator operating at cryogenic temperatures. Light traveling down the silicon waveguide couples to the resonance of the micro-disk cavity. An electrical signal applied to the disk shifts the resonance and as a result modulates the light passing through the waveguide. (Rendered by Hanqing Kuang)
CREDIT
Michael Gehl, Sandia National Laboratories
This is an illustration of a silicon photonic micro-disk modulator operating at cryogenic temperatures. Light traveling down the silicon waveguide couples to the resonance of the micro-disk cavity. An electrical signal applied to the disk shifts the resonance and as a result modulates the light passing through the waveguide. (Rendered by Hanqing Kuang) CREDIT Michael Gehl, Sandia National Laboratories

Abstract:
A silicon optical switch newly developed at Sandia National Laboratories is the first to transmit up to 10 gigabits per second of data at temperatures just a few degrees above absolute zero. The device could enable data transmission for next-generation superconducting computers that store and process data at cryogenic temperatures. Although these supercomputers are still experimental, they could potentially offer computing speeds ten times faster than today's computers while significantly decreasing power usage.

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption

Washington, DC | Posted on March 20th, 2017

The fact that the switch operates at a range of temperatures, offers fast data transmission and requires little power could also make it useful for transmitting data from instruments used in space, where power is limited and temperatures vary widely.

"Making electrical connections to systems operating at very cold temperatures is very challenging, but optics can offer a solution," said lead researcher Michael Gehl, Sandia National Laboratories, New Mexico. "Our tiny switch allows data to be transmitted out of the cold environment using light traveling through an optical fiber, rather than electricity."

In The Optical Society's journal for high impact research, Optica, Gehl and his colleagues describe their new silicon micro-disk modulator and show that it can transmit data in environments as cold as 4.8 Kelvin. The device was fabricated with standard techniques used to make CMOS computer chips, which means it can be easily integrated onto chips containing electronic components.

"This is one of the first examples of an active silicon optical device operating at such a low temperature," said Gehl. "Our device could potentially revolutionize technologies that are limited by how fast you can send information in and out of a cold environment electrically."

Optics excels at low temperatures

For low-temperature applications, optical methods provide several benefits over electrical data transmission. Because electrical wires conduct heat, they often introduce heat into a system that needs to stay cold. Optical fibers, on the other hand, transmit almost no heat. Also, a single optical fiber can transmit more data at faster rates than an electrical wire, meaning that one fiber can do the job of many electrical connections.

The micro-disk modulator requires very little power to operate -- around 1000 times less power than today's commercially available electro-optical switches -- which also helps reduce the heat the device contributes to the cold environment.

To make the new device, the researchers fabricated a small silicon waveguide (used to transmit light waves) next to a silicon micro-disk only 3.5 microns in diameter. Light coming through the waveguide moves into the micro-disk and travels around the disk rather than passing straight through the waveguide. Adding impurities to the silicon micro-disk creates an electrical junction to which a voltage can be applied. The voltage changes the material's properties in a way that stops the light from moving into the disk and allows it to instead pass through the waveguide. This means that the light signal turns off and on as the voltage switches on and off, providing a way to turn the ones and zeroes that make up electrical data into an optical signal.

Although other research groups have designed similar devices, Gehl and his colleagues are the first to optimize the amount of impurities used and the exact placement of those impurities to allow the micro-disk modulator to operate at low temperatures. Their approach could be used to make other electro-optical devices that work at low temperatures.

Low error rate

To test the micro-disk modulator, the researchers placed it inside a cryostat -- a small vacuum chamber that can cool what's inside to very low temperatures. The micro-disk modulator converted an electrical signal sent into the cryostat to an optical signal. The researchers then examined the optical signal coming out of the cryostat to measure how well it matched the incoming electrical data.

The researchers operated their device at room temperature, 100 Kelvin and 4.8 Kelvin with various data rates up to 10 gigabits per second. Although they observed a slight increase in errors at the highest data rate and lowest temperature, the error rate was still low enough for the device to be useful for transmitting data.

This work builds on years of effort to develop silicon photonic devices for optical communication and high performance computing applications, led by the Applied Photonics Microsystems group at Sandia. As a next step, the researchers want to demonstrate that their device works with data generated inside the low temperature environment, rather than only electrical signals coming from outside the cryostat. They are also continuing to optimize the performance of the device.

###

The research is supported by the U.S. Department of Energy's Laboratory Directed Research and Development program.

####

About The Optical Society
Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org/100.

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 40 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

For more information, please click here

Contacts:
Joshua Miller

202-416-1435

Rebecca B. Andersen
The Optical Society

+1 202.416.1443

Copyright © The Optical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Paper: M. Gehl, C. Long, D. Trotter, A. Starbuck, A. Pomerene, J.B. Wright, S. Melgaard, J. Siirola, A.L. Lentine, C. DeRose, "Operation of High-Speed Silicon Photonic Micro-Disk Modulators at Cryogenic Temperatures," Optica, Volume 4, Issue 3,374-382 (2017). DOI: 10.1364/optica.4.000374:

Related News Press

News and information

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Superconductivity

Discovery in new material raises questions about theoretical models of superconductivity March 13th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

Metallic hydrogen, once theory, becomes reality: Harvard physicists succeed in creating 'the holy grail of high-pressure physics' January 28th, 2017

Govt.-Legislation/Regulation/Funding/Policy

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Possible Futures

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Chip Technology

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Optical computing/Photonic computing

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

New research could trigger revolution in computer electronics manufacturing March 3rd, 2017

Most Complex Nanoparticle Crystal Ever Made by Design: Possible applications include controlling light, capturing pollutants, delivering therapeutics March 2nd, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Discoveries

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Announcements

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Photonics/Optics/Lasers

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

MIPT physicists predict the existence of unusual optical composites March 10th, 2017

Leti Announces Backside Shield that Protects Microchips from Physical Attacks March 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project