Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New nanofiber marks important step in next generation battery development

This is a 20 nanometer double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions -- one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries.
CREDIT
Georgia Tech
This is a 20 nanometer double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions -- one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries. CREDIT Georgia Tech

Abstract:
One of the keys to building electric cars that can travel longer distances and to powering more homes with renewable energy is developing efficient and highly capable energy storage systems.

New nanofiber marks important step in next generation battery development

Atlanta, GA | Posted on March 14th, 2017

Materials researchers at Georgia Institute of Technology have created a nanofiber that could help enable the next generation of rechargeable batteries and increase the efficiency of hydrogen production from water electrolysis.

In a study that was published February 27 in Nature Communications and was sponsored by the National Science Foundation, the researchers describe the development of double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions - one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries.

"Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries," said Meilin Liu, a Regents Professor in the Georgia Tech School of Materials Science and Engineering. "The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process."

Perovskite refers to the crystal structure of the catalyst the researchers used to form the nanofibers.

"This unique crystal structure and the composition are vital to enabling better activity and durability for the application," Liu said.

During the synthetization process, the researchers used a technique called composition tuning - or "co-doping" - to improve the intrinsic activity of the catalyst by approximately 4.7 times. The perovskite oxide fiber made during the electrospinning process was about 20 nanometers in diameter - which thus far is the thinnest diameter reported for electrospun perovskite oxide nanofibers.

The researchers found that the new substance showed markedly enhanced oxygen evolution reaction capability when compared to existing catalysts. The new nanofiber's mass-normalized catalytic activity improved about 72 times greater than the initial powder catalyst, and 2.5 times greater than iridium oxide, which is considered a state of the art catalyst by current standards.

That increase in catalytic activity comes in part from the larger surface area achieved with nanofibers, the researchers said. Synthesizing the perovskite structure into a nanofiber also boosted its intrinsic activity, which also improved how efficiently it worked as a catalyst for oxygen evolution reactions (OER).

"This work not only represents an advancement in the development of highly efficient and durable electrocatalysts for OER but may also provide insight into the effect of nanostructures on the intrinsic OER activity," the researchers wrote.

Beyond its applicability in the development of rechargeable metal air batteries, the new catalyst could also represent the next step in creating more efficient fuel cell technologies that could aid in the creation of renewable energy systems.

"Solar, wind, geothermal - those are becoming very inexpensive today. But the trouble is those renewable energies are intermittent in nature," Liu said. "When there is no wind, you have no power. But what if we could store the energy from the sun or the wind when there's an excess supply. We can use that extra electricity to produce hydrogen and store that energy for use when we need it."

That's where the new nanofiber catalysts could make a difference, he said.

"To store that energy, batteries are still very expensive," Liu said. "We need a good catalyst in order for the water electrolysis to be efficient. This catalyst can speed up electrochemical reactions in water splitting or metal air batteries."

###

This material is based upon work supported by the National Science Foundation under Grant Nos. DMR-1410320 and TG-DMR140083. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

####

For more information, please click here

Contacts:
Josh Brown

404-385-0500

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Bote Zhao, Lei Zhang, Dongxing Zhen, Seonyoung Yoo, Yong Ding, Dongchang Chen, Yu Chen, Qiaobao Zhang, Brian Doyle, Xunhui Xiong and Meilin Liu, "A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution," (Nature Communications, 2017):

Related News Press

News and information

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Perovskites

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Atomic movies may help explain why perovskite solar cells are more efficient: SLAC's ultrafast 'electron camera' captures surprising atomic motions in these next-generation materials July 28th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Possible Futures

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Discoveries

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Materials/Metamaterials

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Announcements

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

DNA sensor system developed for specific and sensitive measurement of cancer-relevant enzyme activity August 23rd, 2017

Lego proteins revealed: Self-assembling protein complexes based on a single mutation could provide scaffolding for nanostructures August 23rd, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Automotive/Transportation

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project