Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New nanofiber marks important step in next generation battery development

This is a 20 nanometer double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions -- one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries.
CREDIT
Georgia Tech
This is a 20 nanometer double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions -- one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries. CREDIT Georgia Tech

Abstract:
One of the keys to building electric cars that can travel longer distances and to powering more homes with renewable energy is developing efficient and highly capable energy storage systems.

New nanofiber marks important step in next generation battery development

Atlanta, GA | Posted on March 14th, 2017

Materials researchers at Georgia Institute of Technology have created a nanofiber that could help enable the next generation of rechargeable batteries and increase the efficiency of hydrogen production from water electrolysis.

In a study that was published February 27 in Nature Communications and was sponsored by the National Science Foundation, the researchers describe the development of double perovskite nanofiber that can be used as a highly efficient catalyst in ultrafast oxygen evolution reactions - one of the underlying electrochemical processes in hydrogen-based energy and the newer metal-air batteries.

"Metal-air batteries, such as those that could power electric vehicles in the future, are able to store a lot of energy in a much smaller space than current batteries," said Meilin Liu, a Regents Professor in the Georgia Tech School of Materials Science and Engineering. "The problem is that the batteries lack a cost-efficient catalyst to improve their efficiency. This new catalyst will improve that process."

Perovskite refers to the crystal structure of the catalyst the researchers used to form the nanofibers.

"This unique crystal structure and the composition are vital to enabling better activity and durability for the application," Liu said.

During the synthetization process, the researchers used a technique called composition tuning - or "co-doping" - to improve the intrinsic activity of the catalyst by approximately 4.7 times. The perovskite oxide fiber made during the electrospinning process was about 20 nanometers in diameter - which thus far is the thinnest diameter reported for electrospun perovskite oxide nanofibers.

The researchers found that the new substance showed markedly enhanced oxygen evolution reaction capability when compared to existing catalysts. The new nanofiber's mass-normalized catalytic activity improved about 72 times greater than the initial powder catalyst, and 2.5 times greater than iridium oxide, which is considered a state of the art catalyst by current standards.

That increase in catalytic activity comes in part from the larger surface area achieved with nanofibers, the researchers said. Synthesizing the perovskite structure into a nanofiber also boosted its intrinsic activity, which also improved how efficiently it worked as a catalyst for oxygen evolution reactions (OER).

"This work not only represents an advancement in the development of highly efficient and durable electrocatalysts for OER but may also provide insight into the effect of nanostructures on the intrinsic OER activity," the researchers wrote.

Beyond its applicability in the development of rechargeable metal air batteries, the new catalyst could also represent the next step in creating more efficient fuel cell technologies that could aid in the creation of renewable energy systems.

"Solar, wind, geothermal - those are becoming very inexpensive today. But the trouble is those renewable energies are intermittent in nature," Liu said. "When there is no wind, you have no power. But what if we could store the energy from the sun or the wind when there's an excess supply. We can use that extra electricity to produce hydrogen and store that energy for use when we need it."

That's where the new nanofiber catalysts could make a difference, he said.

"To store that energy, batteries are still very expensive," Liu said. "We need a good catalyst in order for the water electrolysis to be efficient. This catalyst can speed up electrochemical reactions in water splitting or metal air batteries."

###

This material is based upon work supported by the National Science Foundation under Grant Nos. DMR-1410320 and TG-DMR140083. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

####

For more information, please click here

Contacts:
Josh Brown

404-385-0500

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

CITATION: Bote Zhao, Lei Zhang, Dongxing Zhen, Seonyoung Yoo, Yong Ding, Dongchang Chen, Yu Chen, Qiaobao Zhang, Brian Doyle, Xunhui Xiong and Meilin Liu, "A tailored double perovskite nanofiber catalyst enables ultrafast oxygen evolution," (Nature Communications, 2017):

Related News Press

News and information

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Perovskites

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Ultra-stable perovskite solar cell remains stable for more than a year June 1st, 2017

Next generation perovskite solar cells with new world-record performance April 3rd, 2017

Perovskite edges can be tuned for optoelectronic performance: Layered 2D material improves efficiency for solar cells and LEDs March 10th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Discoveries

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

X-ray photoelectron spectroscopy under real ambient pressure conditions June 28th, 2017

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Energy

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

Automotive/Transportation

Letiís Autonomous-Vehicle System Embedded in Infineonís AURIX Platform: Letiís Low-Power, Multi-Sensor System that Transforms Distance Data into Clear Information About the Driving Environment Will Be Demonstrated at ITS Meeting in Strasbourg, June 19-22 June 20th, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the companyís 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Solar/Photovoltaic

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Development of low-dimensional nanomaterials could revolutionize future technologies June 15th, 2017

In a project funded by the Austrian Science Fund FWF, the physicist Serdar SarıÁiftÁi investigates possible uses in electronics of the semiconductor properties of indigo pigment June 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project