Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology

Photograph of the TEC prototype during operation in the Stanford lab.
CREDIT
© Elsevier
Photograph of the TEC prototype during operation in the Stanford lab. CREDIT © Elsevier

Abstract:
Satellite-powering technology that was abandoned decades ago has been reinvented to potentially work with traditional power stations to help them convert heat to electricity more efficiently, meaning we would need less fossil fuel to burn for power. A new study in Nano Energy presents a prototype energy converter, which uses graphene instead of metal, making it almost seven times more efficient.

Space energy technology restored to make power stations more efficient: Scientists use graphene to reinvent abandoned heat energy converter technology

Oxford, UK | Posted on March 7th, 2017

The researchers behind the study, led by Prof. Roger Howe at Stanford University, say new materials could reignite the field of thermionic energy conversion, improving the way we produce electricity and reducing the impact the process has on the environment.

Energy is one of the most challenging problems society faces today, with an estimated 1.2 billion people having no access to electricity. Thermal energy is one of the most abundant, cheap and widely used energy sources in the world, but it is harvested using old technology: more than 80 percent of the electricity generated in the US comes from mechanical heat engines and turbines based on the 19th century technology that can only be used in large power stations.

Alternatively, the thermionic energy convertor (TEC) can convert heat to electricity more efficiently without the need for big, expensive equipment through the phenomenon of thermionic emission. TECs were first developed in the 1950s for use in space programs, but scientists had not managed to make TECs efficient enough to apply to industrial electricity production. Now, with modern materials and approaches, it is possible to improve their efficiency significantly.

The TEC is composed of two electrodes, namely the emitter and collector, separated by a small vacuum gap. The researchers tested a prototype TEC made using a single sheet of carbon atoms - graphene - instead of tungsten as the collector material. They found the new material improved the efficiency of the TEC, making it 6.7 times more efficient at converting heat into electricity at 1000?C

"TEC technology is very exciting. With improvement in the efficiency, we expect to see an enormous market for it," commented lead author Dr. Hongyuan Yuan from Stanford University. "TECs could not only help make power stations more efficient, and therefore have a lower environmental impact, but they could be also applied in distributed systems like solar cells. In the future, we envisage it being possible to generate 1-2 kW of electricity from water boilers, which could partially power your house."

Existing TEC technology faces two obstacles: a high loss of energy at the anode surface, which leads to reduced output voltage, and high electrical barriers against electrons moving in the gap between the collector and the emitter, which results in reduced output current. For the first time, the new prototype tackles both of these problems simultaneously. The findings of the study reveal an electronic efficiency in energy conversion of 9.8 percent - by far the highest efficiency at 1000?C.

The technology is not yet ready for use in power stations or people's homes - the prototype works in a vacuum chamber but not in a normal setting. The researchers are now working on a vacuum packaged TEC to test the reliability and efficiency of the technology in real applications.

"This prototype is just the first step - there is a lot more to do," said Dr. Yuan. "But our results so far are promising and reflect a happy marriage between modern materials science and an old-fashioned energy technology, which provides a route for re-sparking the field of thermionic energy conversion."

####

About Elsevier
Elsevier is a global information analytics company that helps institutions and professionals progress science, advance healthcare and improve performance for the benefit of humanity. Elsevier provides digital solutions and tools in the areas of strategic research management, R&D performance, clinical decision support, and professional education; including ScienceDirect, Scopus, ClinicalKey and Sherpath. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell, more than 35,000 e-book titles and many iconic reference works, including Gray's Anatomy. Elsevier is part of RELX Group, a world-leading provider of information and analytics to professionals and business customers, in a wide range of industries. www.elsevier.com

About Nano Energy

Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.

For more information, please click here

Contacts:
Lucy Rodzynska

44-186-584-3383

Copyright © Elsevier

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article is "Back-gated graphene anode for more efficient thermionic energy converters," by Hongyuan Yuana, Daniel C. Riley, Zhi-Xun Shen, Piero A. Pianetta, Nicholas A. Melosh and Roger T. Howeb (http://dx.doi.org/10.1016/j.nanoen.2016.12.027). It appears in Nano Energy, volume 32 (2017), published by Elsevier:

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Graphene/ Graphite

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Two-dimensional melting of hard spheres experimentally unravelled after 60 years: First definitive experimental evidence of two-dimensional melting of hard spheres April 21st, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

Possible Futures

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Discoveries

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Aerospace/Space

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project