Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers optimize the assembly of micro-/meso-/macroporous carbon for Li-S batteries

Abstract:
Li-S batteries are considered as promising alternatives for Li-ion batteries in the new generation of energy storages, due to high specific capacity (1675 mAh/g) and energy density (2600 mWh/g) of sulfur. But the poor conductivity of sulfur and severe shuttle effect of reaction intermediates destory the stability of this system. A variety of porous carbon materials have been applied as sulfur host to improve the performances of Li-S batteries for high conductivity, specific surface area and absorption effect. However, what kind of porous carbon would be the optimal choice to accommodate active material? And Which characteristic of carbon pores should be emphasized? A team of researchers from the School of Materials Science and Engineering and School of Electronic Science and Applied Physics at Hefei University of Technology demostrated that pore size distribution substantially influences the performances of cathode rather than specific surface area and total pore volume. Furthermore, an optimized assembly of micro/meso/macroporous carbon enables cathode present greatly improved electrochemical performances, in which micropore-volume-ratio to the total pore volume dominates cycling stability of batteries, meso/macropore-volume-ratio influences spaces for sulfur loading and channels to ion transfer. This research provides a direction of fabricating porous materials for energy storage.The report appears in the latest issue of the journal NANO.

Researchers optimize the assembly of micro-/meso-/macroporous carbon for Li-S batteries

Singapore | Posted on February 13th, 2017

Based on the traditional S/C cathode, the effects of surface area, total pore volume and pore size distribution of carbon pores on performances of Li-S batteries are compared. In addition, on the premise of identically high sulfur content, the relation of the micro/meso/macropore volume ratio with the capacity, voltage plateau, rate capability, and cycle stability of Li-S battery are investigated. Among the samples, the porous carbon possesses the largest micropore volume ratio of 47.54% while a medium specific surface area of 1217 m2/g and inferior total pore volume of 0.54 cm3/g presents the highest initial discharge specific capacity of 1327 mAh/g and retention of 630 mAh/g over 100 cycles at 0.2C rate along with the best rate capability. The conclusions in this study can be directly applied in material fabrication for other systems of energy storage and even as criterions for further modification of Li-S batteries based on carbon material.

This research was supported by the "Strategic Priority Research Program" of the Chinese Academy of Science (NO. XDA03040000) and the Fundamental Research Funds for the Central Universities (NO. 103-4115100010) of China.

####

About World Scientific
World Scientific Publishing is a leading independent publisher of books and journals for the scholarly, research, professional and educational communities. The company publishes about 600 books annually and about 130 journals in various fields. World Scientific collaborates with prestigious organisations like the Nobel Foundation, US National Academies Press, as well as its subsidiary, the Imperial College Press, amongst others, to bring high quality academic and professional content to researchers and academics worldwide. To find out more about World Scientific, please visit www.worldscientific.com.

For more information, please click here

Contacts:
Chin Wanying

656-466-5775

Copyright © World Scientific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE - Additional co-authors of the NANO paper are Min Zuo, Jing Zhang, Yiqin Huang, Peiwen Bai, Jiaqi Xu, Kuan Zhou:

Related News Press

News and information

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Possible Futures

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Discoveries

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Materials/Metamaterials

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Alloying materials of different structures offers new tool for controlling properties June 19th, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

Announcements

Bosch announces high-performance MEMS acceleration sensors for wearables June 27th, 2017

Nanometrics to Participate in the 9th Annual CEO Investor Summit 2017: Accredited investor and publishing research analyst event held concurrently with SEMICON West and Intersolar 2017 in San Francisco June 27th, 2017

NMRC, University of Nottingham chooses the Quorum Q150 coater for its reliable and reproducible film thickness when coating samples with iridium June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Physicists make quantum leap in understanding life's nanoscale machinery June 27th, 2017

Picosunís ALD solutions enable novel high-speed memories June 27th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Smart materials used in ultrasound behave similar to water, Penn chemists report June 16th, 2017

X-ray Study Reveals Way to Control Molecular Vibrations that Transmit Heat: Findings open new pathway for "tuning" materials to ease or insulate against the flow of heat, sound, and other forms of energy June 7th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project