Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality

Abstract:
A research team of physicists from Harvard University has developed new hand-held spectrometers capable of the same performance as large, benchtop instruments. The researchers' innovation explained this week in APL Photonics, from AIP Publishing, derives from their groundbreaking work in meta-lenses. The hand-held spectrometers offer real promise for applications ranging from health care diagnostics to environmental and food monitoring.

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality

Washington, DC | Posted on February 9th, 2017

Spectrometers are instruments that are widely used to quantify the presence of various biological or chemical compounds based on their interaction with light. However, to be a practical tool for users, such as physicians at the bedside or food-safety inspectors out in the field, spectrometers have to be portable, low-cost and easy to use without specialized equipment or training. Typically, however, there is an inherent trade-off between the size and performance of the spectrometer. To maintain performance while reducing spectrometer size, this team of researchers has developed a spectrometer incorporating meta-lenses that combine the functionalities of a traditional grating and focusing mirror into a single component, as well as having much greater ability to spatially separate wavelengths (the so-called dispersion). In all, the overall size of the spectrometer is significantly reduced without sacrificing performance.

"This research has its roots all the way back to 2011, when we were investigating the fundamental properties of light as it interacts with two dimensional metamaterials (metasurfaces) and discovered generalized laws for the refraction and reflection of light for metasurface, which are powerful generalizations of the textbook laws valid for ordinary surfaces," explained Federico Capasso of Harvard.

Unlike traditional refractory lenses that are millimeters thick and have a characteristic curved surface, a meta-lens is a completely flat or planar lens made up of millions of nanostructures. Using lithographic techniques, proper placement and fabrication of these nanostructures enables similar or better functionalities compared to traditional lenses. These meta-lenses can be customized to a user's specifications, and mass-produced using the same foundries that produce computer chips. "For these reasons, we believe meta-lenses to be game-changers," Capasso said. "In fact, our work on metalenses in the visible, published last year, was hailed by Science magazine as one of the top breakthroughs of the year in 2016."

"The potential applications of these new smaller spectrometers are significant for portable monitoring of biological and chemical compounds" said Alex Zhu, lead author of the paper. "For example, physicians could bring hospital-level diagnostic capabilities to patients in the field where sophisticated equipment and highly trained personnel are not available, providing data on a timescale of minutes to hours, as opposed to days or weeks from usual chemistry-based methods." The same is true for environmental monitoring: Data about pollutants, or toxic chemicals could be collected and processed in real time on site at various locations with ultra-compact, high performance spectrometers.

The next step toward realizing the full potential of these meta-spectrometers is to improve the performance of the prototype for both the working wavelength range and spectral resolution. This would allow it to be used for a wide variety of analyses, including highly specialized ones to identify proteins or gene markers (Raman spectroscopy), which typically involve onerous processes with sophisticated equipment in a full-size laboratory.

"The goal is to be able to achieve comparable levels of performance with a simple 'plug-and-play' two-component device, i.e., a meta-lens and a detector, which together function as a meta-spectrometer," Zhu said. "The potential for this already exists in the meta-lens technology; it is simply a question of finding the right configurations and making it work."

###

The research was partially funded by the Air Force Office of Scientific Research (AFOSR).

This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University.

####

About American Institute of Physics
APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See scitation.aip.org/content/aip/journal/app.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Ultra-compact visible chiral spectrometer with meta-lenses," is authored by A. Y. Zhu, W. T. Chen, M. Khorasaninejad, J. Oh, Aun Zaidi, Ishan Mishra, R. C. Devlin and F. Capasso. The article will appeared in the journal APL Photonics Feb. 7, 2017 (DOI: 10.1063/1.494259) and can be accessed at:

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Possible Futures

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Discoveries

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Tools

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Chemical hot spots: Scanning tunneling microscopy measurements identify active sites on catalyst surfaces September 7th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Military

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Food/Agriculture/Supplements

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

New technology could offer cheaper, faster food testing: Specialized droplets interact with bacteria and can be analyzed using a smartphone April 7th, 2017

PCATDES Starts Field Testing of Photocatalytic Reactors in South East Asia December 28th, 2016

Environment

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

A more complete picture of the nano world August 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project