Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality

Abstract:
A research team of physicists from Harvard University has developed new hand-held spectrometers capable of the same performance as large, benchtop instruments. The researchers' innovation explained this week in APL Photonics, from AIP Publishing, derives from their groundbreaking work in meta-lenses. The hand-held spectrometers offer real promise for applications ranging from health care diagnostics to environmental and food monitoring.

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality

Washington, DC | Posted on February 9th, 2017

Spectrometers are instruments that are widely used to quantify the presence of various biological or chemical compounds based on their interaction with light. However, to be a practical tool for users, such as physicians at the bedside or food-safety inspectors out in the field, spectrometers have to be portable, low-cost and easy to use without specialized equipment or training. Typically, however, there is an inherent trade-off between the size and performance of the spectrometer. To maintain performance while reducing spectrometer size, this team of researchers has developed a spectrometer incorporating meta-lenses that combine the functionalities of a traditional grating and focusing mirror into a single component, as well as having much greater ability to spatially separate wavelengths (the so-called dispersion). In all, the overall size of the spectrometer is significantly reduced without sacrificing performance.

"This research has its roots all the way back to 2011, when we were investigating the fundamental properties of light as it interacts with two dimensional metamaterials (metasurfaces) and discovered generalized laws for the refraction and reflection of light for metasurface, which are powerful generalizations of the textbook laws valid for ordinary surfaces," explained Federico Capasso of Harvard.

Unlike traditional refractory lenses that are millimeters thick and have a characteristic curved surface, a meta-lens is a completely flat or planar lens made up of millions of nanostructures. Using lithographic techniques, proper placement and fabrication of these nanostructures enables similar or better functionalities compared to traditional lenses. These meta-lenses can be customized to a user's specifications, and mass-produced using the same foundries that produce computer chips. "For these reasons, we believe meta-lenses to be game-changers," Capasso said. "In fact, our work on metalenses in the visible, published last year, was hailed by Science magazine as one of the top breakthroughs of the year in 2016."

"The potential applications of these new smaller spectrometers are significant for portable monitoring of biological and chemical compounds" said Alex Zhu, lead author of the paper. "For example, physicians could bring hospital-level diagnostic capabilities to patients in the field where sophisticated equipment and highly trained personnel are not available, providing data on a timescale of minutes to hours, as opposed to days or weeks from usual chemistry-based methods." The same is true for environmental monitoring: Data about pollutants, or toxic chemicals could be collected and processed in real time on site at various locations with ultra-compact, high performance spectrometers.

The next step toward realizing the full potential of these meta-spectrometers is to improve the performance of the prototype for both the working wavelength range and spectral resolution. This would allow it to be used for a wide variety of analyses, including highly specialized ones to identify proteins or gene markers (Raman spectroscopy), which typically involve onerous processes with sophisticated equipment in a full-size laboratory.

"The goal is to be able to achieve comparable levels of performance with a simple 'plug-and-play' two-component device, i.e., a meta-lens and a detector, which together function as a meta-spectrometer," Zhu said. "The potential for this already exists in the meta-lens technology; it is simply a question of finding the right configurations and making it work."

###

The research was partially funded by the Air Force Office of Scientific Research (AFOSR).

This work was performed in part at the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Coordinated Infrastructure Network (NNCI), which is supported by the National Science Foundation under NSF award no. 1541959. CNS is part of Harvard University.

####

About American Institute of Physics
APL Photonics is the dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science. See scitation.aip.org/content/aip/journal/app.

For more information, please click here

Contacts:
AIP Media Line

301-209-3090

Copyright © American Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The article, "Ultra-compact visible chiral spectrometer with meta-lenses," is authored by A. Y. Zhu, W. T. Chen, M. Khorasaninejad, J. Oh, Aun Zaidi, Ishan Mishra, R. C. Devlin and F. Capasso. The article will appeared in the journal APL Photonics Feb. 7, 2017 (DOI: 10.1063/1.494259) and can be accessed at:

Related News Press

News and information

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Possible Futures

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Nanomedicine

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Discoveries

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Announcements

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Unconventional superconductor may be used to create quantum computers of the future: They have probably succeeded in creating a topological superconductor February 19th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Computers aid discovery of new, inexpensive material to make LEDs with high color quality February 20th, 2018

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Tools

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

A new radiation detector made from graphene: A new bolometer exploits the thermoelectric properties of graphene February 6th, 2018

Military

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

Researchers use sound waves to advance optical communication January 22nd, 2018

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Food/Agriculture/Supplements

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

Nanowrinkles could save billions in shipping and aquaculture Surfaces inspired by carnivorous plants delay degradation by marine fouling January 17th, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

Environment

Ultra-efficient removal of carbon monoxide using gold nanoparticles on a molecular support: New method and mechanism for state-of-the-art gas purification February 9th, 2018

New filters could enable manufacturers to perform highly-selective chemical separation January 23rd, 2018

Rice U.'s one-step catalyst turns nitrates into water and air: NSF-funded NEWT Center aims for catalytic converter for nitrate-polluted water January 5th, 2018

'Quantum material' has shark-like ability to detect small electrical signals December 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project