Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks

This diagram describes how the device Dr. Hood helped to develop is implanted into a cancerous tumor.
CREDIT
Lyle Hood/UTSA
This diagram describes how the device Dr. Hood helped to develop is implanted into a cancerous tumor. CREDIT Lyle Hood/UTSA

Abstract:
A new study by Lyle Hood, assistant professor of mechanical engineering at The University of Texas at San Antonio (UTSA), describes a new device that could revolutionize the delivery of medicine to treat cancer as well as a host of other diseases and ailments. Hood developed the device in partnership with Alessandro Grattoni, chair of the Department of Nanomedicine at Houston Methodist Research Institute.

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks

San Antonio, TX | Posted on December 3rd, 2016

"The problem with most drug-delivery systems is that you have a specific minimum dosage of medicine that you need to take for it to be effective," Hood said. "There's also a limit to how much of the drug can be present in your system so that it doesn't make you sick."

As a result of these limitations, a person who needs frequent doses of a specific medicine is required to take a pill every day or visit a doctor for injections. Hood's creation negates the need for either of these approaches, because it's a tiny implantable drug delivery system.

"It's an implantable capsule, filled with medicinal fluid that uses about 5000 nanochannels to regulate the rate of release of the medicine," Hood said. "This way, we have the proper amount of drugs in a person's system to be effective, but not so much that they'll harm that person."

The capsule can deliver medicinal doses for several days or a few weeks. According to Hood, it can be used for any kind of ailment that needs a localized delivery over several days or a few weeks. This makes it especially tailored for treating cancer, while a larger version of the device, which was originally created by Grattoni, can treat diseases like HIV for up to a year.

"In HIV treatment, you can bombard the virus with drugs to the point that that person is no longer infectious and shows no symptoms," Hood said. "The danger is that if that person stops taking their drugs, the amount of medicine in his or her system drops below the effective dose and the virus is able to become resistant to the treatments."

The capsule, however, could provide a constant delivery of the HIV-battling drugs to prevent such an outcome. Hood noted it can also be used to deliver cortisone to damaged joints to avoid painful, frequent injections, and possibly even to pursue immunotherapy treatments for cancer patients.

"The idea behind immunotherapy is to deliver a cocktail of immune drugs to call attention to the cancer in a person's body, so the immune system will be inspired to get rid of the cancer itself," he said.

The current prototype of the device is permanent and injected under the skin, but Hood is working with Teja Guda, assistant professor of biomedical engineering, to collaborate on 3-D printing technology to make a new, fully biodegradable iteration of the device that could potentially be swallowed.

####

For more information, please click here

Contacts:
Joanna Carver

210-243-4557

Copyright © University of Texas at San Antonio

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

3D & 4D printing/Additive-manufacturing

Presenting: Ultrasound-based printing of 3D materials—potentially inside the body December 8th, 2023

Cancer

University of Toronto researchers discover new lipid nanoparticle that shows muscle-specific mRNA delivery, reduces off-target effects: Study findings make significant contribution to generating tissue-specific ionizable lipids and prompts rethinking of mRNA vaccine design princi December 8th, 2023

Super-efficient laser light-induced detection of cancer cell-derived nanoparticles: Skipping ultracentrifugation, detection time reduced from hours to minutes! October 6th, 2023

The medicine of the future could be artificial life forms October 6th, 2023

Chung-Ang University researchers develop novel DNA biosensor for early diagnosis of cervical cancer: The electrochemical sensor, made of a graphitic nano-onion/molybdenum disulfide nanosheet composite, detects human papillomavirus (HPV)-16 and HPV-18, with high specificity September 8th, 2023

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project