Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance

Members of the Brookhaven Lab research team—(clockwise from left) Stuart Wilkins, Xiaoqian Chen, Mark Dean, Vivek Thampy, and Andi Barbour—at the National Synchrotron Light Source II's Coherent Soft X-ray Scattering beamline, where they studied the electronic order of "charge stripes" in a copper-oxide superconductor.
Members of the Brookhaven Lab research team—(clockwise from left) Stuart Wilkins, Xiaoqian Chen, Mark Dean, Vivek Thampy, and Andi Barbour—at the National Synchrotron Light Source II's Coherent Soft X-ray Scattering beamline, where they studied the electronic order of "charge stripes" in a copper-oxide superconductor.

Abstract:
Cuprates, or compounds made of copper and oxygen, can conduct electricity without resistance by being "doped" with other chemical elements and cooled to temperatures below minus 210 degrees Fahrenheit. Despite extensive research on this phenomenon-called high-temperature superconductivity-scientists still aren't sure how it works. Previous experiments have established that ordered arrangements of electrical charges known as "charge stripes" coexist with superconductivity in many forms of cuprates. However, the exact nature of these stripes-specifically, whether they fluctuate over time-and their relationship to superconductivity-whether they work together with or against the electrons that pair up and flow without energy loss-have remained a mystery.

Scientists Find Static "Stripes" of Electrical Charge in Copper-Oxide Superconductor: Fixed arrangement of charges coexists with material's ability to conduct electricity without resistance

Upton, NY | Posted on October 14th, 2016

Now, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have demonstrated that static, as opposed to fluctuating, charge stripes coexist with superconductivity in a cuprate when lanthanum and barium are added in certain amounts. Their research, described in a paper published on October 11 in Physical Review Letters, suggests that this static ordering of electrical charges may cooperate rather than compete with superconductivity. If this is the case, then the electrons that periodically bunch together to form the static charge stripes may be separated in space from the free-moving electron pairs required for superconductivity.

"Understanding the detailed physics of how these compounds work helps us validate or rule out existing theories and should point the way toward a recipe for how to raise the superconducting temperature," said paper co-author Mark Dean, a physicist in the X-Ray Scattering Group of the Condensed Matter Physics and Materials Science Department at Brookhaven Lab. "Raising this temperature is crucial for the application of superconductivity to lossless power transmission."

Charge stripes put to the test of time
To see whether the charge stripes were static or fluctuating in their compound, the scientists used a technique called x-ray photon correlation spectroscopy. In this technique, a beam of coherent x-rays is fired at a sample, causing the x-ray photons, or light particles, to scatter off the sample's electrons. These photons fall onto a specialized, high-speed x-ray camera, where they generate electrical signals that are converted to a digital image of the scattering pattern. Based on how the light interacts with the electrons in the sample, the pattern contains grainy dark and bright spots called speckles. By studying this "speckle pattern" over time, scientists can tell if and how the charge stripes change.

In this study, the source of the x-rays was the Coherent Soft X-ray Scattering (CSX-1) beamline at the National Synchrotron Light Source II (NSLS-II), a DOE Office of Science User Facility at Brookhaven.

"It would be very difficult to do this experiment anywhere else in the world," said co-author Stuart Wilkins, manager of the soft x-ray scattering and spectroscopy program at NSLS-II and lead scientist for the CSX-1 beamline. "Only a small fraction of the total electrons in the cuprate participate in the charge stripe order, so the intensity of the scattered x-rays from this cuprate is extremely small. As a result, we need a very intense, highly coherent x-ray beam to see the speckles. NSLS-II's unprecedented brightness and coherent photon flux allowed us to achieve this beam. Without it, we wouldn't be able to discern the very subtle electronic order of the charge stripes."

The team's speckle pattern was consistent throughout a nearly three-hour measurement period, suggesting that the compound has a highly static charge stripe order. Previous studies had only been able to confirm this static order up to a timescale of microseconds, so scientists were unsure if any fluctuations would emerge beyond that point.

X-ray photon correlation spectroscopy is one of the few techniques that scientists can use to test for these fluctuations on very long timescales. The team of Brookhaven scientists-representing a close collaboration between one of Brookhaven's core departments and one of its user facilities-is the first to apply the technique to study the charge ordering in this particular cuprate. "Combining our expertise in high-temperature superconductivity and x-ray scattering with the capabilities at NSLS-II is a great way to approach these kind of studies," said Wilkins.

To make accurate measurements over such a long time, the team had to ensure the experimental setup was incredibly stable. "Maintaining the same x-ray intensity and sample position with respect to the x-ray beam are crucial, but these parameters become more difficult to control as time goes on and eventually impossible," said Dean. "When the temperature of the building changes or there are vibrations from cars or other experiments, things can move. NSLS-II has been carefully engineered to counteract these factors, but not indefinitely."

"The x-ray beam at CSX-1 is stable within a very small fraction of the 10-micron beam size over our almost three-hour practical limit," added Xiaoqian Chen, co-first author and a postdoc in the X-Ray Scattering Group at Brookhaven. CSX-1's performance exceeds that of any other soft x-ray beamline currently operational in the United States.

In part of the experiment, the scientists heated up the compound to test whether thermal energy might cause the charge stripes to fluctuate. They observed no fluctuations, even up to the temperature at which the compound is known to stop behaving as a superconductor.

"We were surprised that the charge stripes were so remarkably static over such long timescales and temperature ranges," said co-first author and postdoc Vivek Thampy of the X-Ray Scattering Group. "We thought we may see some fluctuations near the transition temperature where the charge stripe order disappears, but we didn't."

In a final check, the team theoretically calculated the speckle patterns, which were consistent with their experimental data.

Going forward, the team plans to use this technique to probe the nature of charges in cuprates with different chemical compositions.

X-ray scattering measurements were supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by DOE's Office of Science.

####

About Brookhaven National Laboratory
Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

For more information, please click here

Contacts:
Ariana Tantillo
(631) 344-2347

or
Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Superconductivity

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Laboratories

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project