Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > RMIT researchers make leap in measuring quantum states

The unknown quantum state is shown as a red dot on the Bloch sphere. The algorithm estimates the gradient performing measurements with the green and purple projectors, updates the current estimate of the state (red line), and repeats until the desired accuracy is achieved.
CREDIT: RMIT University
The unknown quantum state is shown as a red dot on the Bloch sphere. The algorithm estimates the gradient performing measurements with the green and purple projectors, updates the current estimate of the state (red line), and repeats until the desired accuracy is achieved.

CREDIT: RMIT University

Abstract:
A breakthrough into the full characterisation of quantum states has been published today as a prestigious Editors' Suggestion in the journal Physical Review Letters.

RMIT researchers make leap in measuring quantum states

Melbourne, Australia | Posted on July 21st, 2016

The full characterisation (tomography) of quantum states is a necessity for future quantum computing. However, standard techniques are inadequate for the large quantum bit-strings necessary in full scale quantum computers.

A research team from the Quantum Photonics Laboratory at RMIT University and EQuS at the University of Sydney has demonstrated a new technique for quantum tomography -- self-guided quantum tomography -- which opens future pathways for characterisation of large quantum states and provides robustness against inevitable system noise.

Dr Alberto Peruzzo, Director of the Quantum Photonics Laboratory, said: "This is a big step forward in quantum tomography. Our technique can be applied to all quantum computing architectures in laboratories around the world."

"Characterising quantum states is a serious bottleneck in quantum information science. Self-guided quantum tomography uses a search algorithm to iteratively 'find' the quantum state.

"This technique significantly reduces the necessary resources by removing the need for any data storage or post-processing."

Robert Chapman, lead author and RMIT PhD student, said the technique employed was far more robust against inevitable noise and experimental errors than standard techniques.

"We experimentally characterise quantum states encoded in single photons -- single particles of light.

"Photons are a strong candidate for future quantum computing, however, our method can be applied to other quantum computing architectures, such as ion traps and superconducting qubits.

"Any experiment suffers from measurement noise which degrades results. In our experiment, we engineer the level of noise up to extreme levels to test the performance of our algorithm. We show that self-guided quantum tomography is significantly more robust against noise than standard tomography.

"We hope research groups can employ our technique as a tool for characterising large quantum states and benefit future quantum technologies."

####

For more information, please click here

Contacts:
Dr Alberto Peruzzo

61-410-790-860

Copyright © RMIT University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

The research, "Experimental demonstration of self-guided quantum tomography", has been published in Physical Review Letters and can be accessed online:

Follow the Quantum Photonics Lab at:

Related News Press

News and information

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Quantum Physics

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Putting a new theory of many-particle quantum systems to the test: Experiments show that generalized hydrodynamics accurately simulates an out-of-equilibrium quantum system September 3rd, 2021

Researchers use gold film to enhance quantum sensing with qubits in a 2D material September 3rd, 2021

Superconductivity

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Superconducting nanowire single-photon detectors: Next big thing in blood flow measurement: Novel detector system improves sensitivity for measurement of cerebral blood flow August 20th, 2021

Quantum Computing

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

Tapping into magnets to clamp down on noise in quantum information September 9th, 2021

Discoveries

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

A simple way to get complex semiconductors to assemble themselves: Much like crystallizing rock candy from sugar syrup, the new method grows 2D perovskites precisely layered with other 2D materials to produce crystals with a wide range of electronic properties September 17th, 2021

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Announcements

Getting to the root of tooth replantation challenges: Researchers from Tokyo Medical and Dental University (TMDU) report a delivery system that promotes healing in tooth replantation in rats September 17th, 2021

Researchers reveal multi-path mechanism in electrochemical CO2 reduction September 17th, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

Silver nanoparticles boost performance of microbial fuel cells September 17th, 2021

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nano particles suppress resistance to cancer immunotherapy September 17th, 2021

New physics research reveals fresh complexities about electron behavior in materials September 17th, 2021

Good for groundwater – bad for crops? Plastic particles release pollutants in upper soil layers: The environmental geoscientists at the Centre for Microbiology and Environmental Systems Science (CMESS) focused on a variety of parameters that contribute to plastic pollution in far September 17th, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Photonics/Optics/Lasers

Lehigh University to lead ‘integrative partnerships’ for multi-university research collaboration in advanced optoelectronic material development: 5-year, $25 million NSF investment in IMOD, a revolutionary center for optoelectronic, quantum technologies September 10th, 2021

Engineering various sources of loss provides new features for perfect light absorption: "Loss is ubiquitous in nature, and by better understanding it, we make it more useful" September 10th, 2021

New substance classes for nanomaterials: Nano spheres and diamond slivers made of silicon and germanium: Potential applications as nano semiconductor materials September 10th, 2021

Ultrafast & ultrathin: new physics professor at TU Dresden makes mysterious quantum world visible September 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project