Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time

The center of a magnetic vortex emits spin waves with very short wavelengths in the presence of high-frequency alternating magnetic fields. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf have hereby provided proof of a mechanism which has great potential for future applications in data processing.
CREDIT: HZDR
The center of a magnetic vortex emits spin waves with very short wavelengths in the presence of high-frequency alternating magnetic fields. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf have hereby provided proof of a mechanism which has great potential for future applications in data processing.

CREDIT: HZDR

Abstract:
With the rapid advance of miniaturization, data processing using electric currents faces tough challenges, some of which are insurmountable. Magnetic spin waves are a promising alternative for the transfer of information in even more compact chips. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), as part of an international research venture, have now succeeded in generating spin waves with extremely short wavelengths in the nanometer range - a key feature for their future application.

A mini-antenna for the data processing of tomorrow: Nature Nanotechnology: Short-wavelength spin waves generated directly for the first time

Dresden, Germany | Posted on July 20th, 2016

Smaller, faster, more energy-efficient - this is the mantra for the further development of computers and mobile telephones which is currently progressing at a breathtaking pace. However, Dr. Sebastian Wintz of the HZDR Institute of Ion Beam Physics and Materials Research knows only too well, how difficult it already is to achieve any further degree of miniaturization. "One major problem with current technologies," he said, "is the heat which is generated when data are transmitted with the aid of electric currents. We need a new concept." The physicist is working with international colleagues on so-called spin waves (magnons) which are set to replace moving charges in the future as information carriers. The scientists have now succeeded for the first time in generating spin waves of such short wavelengths that they have potential for future applications in data processing.

Spin waves replace electric current

The spin denotes a property which lends the particles a magnetic moment. They then act like tiny magnets which run parallel to each other in ferromagnetic materials. If one of the spins then changes direction, this has a knock-on effect on its neighbors. A chain reaction gives rise to a spin wave.

The processing of information is presently based on electric currents. The charged particles speed through a network of wires which are squeezed closer and closer together, driven by the desire for ever more compact chips. On their way, the electrons collide with atoms, causing them to rock to and fro in the crystal lattice thereby generating heat. If the wires are too close together, this heat can no longer be dissipated and the system breaks down. "The great advantage of spin waves is that the electrons themselves don't move," explained Wintz, "therefore precious little heat is produced by the flow of data."

Magnetic vortex as a nano-antenna

The traditional approach adopted to generate spin waves is to use small metal antennas which generate magnons when driven by a high-frequency alternating current. The smallest wavelength which can be generated in this way will be about the size of the antenna which is used. This is precisely where the major problem lies in that small wavelengths on the nanometer scale are required in order to satisfy the demand for ever greater miniaturization. It is not currently possible, however, to make such small high-frequency antennas.

The research team from Germany, Switzerland and the USA has now succeeded in generating extremely short-wavelength spin waves in an entirely new way. As a naturally formed antenna, they use the center of a magnetic vortex which is produced in a small, ultra-thin ferromagnetic disk. Due to the disk's limited size, the spins do not all line up in parallel as normal but lie along concentric circles in the plane of the disk. This, in turn, forces the spins from a small area in the center of the disk, which measures just a few nanometers in diameter, to straighten up and, thus, to point away from the surface of the disk. If this central region is subjected to an alternating magnetic field then a spin wave is produced.

A few more tricks are needed, however, in order to shorten the wavelength as required. Consequently, a second tiny disk is placed onto the first, separated by a thin, non-magnetic layer. When this separating layer is fabricated with a specific thickness, then the two disks interact in such a way as to elicit an antiferromagnetic coupling between the disks - the spins try to point in opposite directions - which reduces the wavelength of the emitted spin waves many times over. "Only in this way do we arrive at a result which is relevant for information technology," added Wintz.

Attractive properties for applications

The scientists not only demonstrated the short wavelengths of the spin waves generated in this way but were also able to reveal other wave properties which could be very useful for future applications. With the help of high-speed movies taken with an X-ray microscope belonging to the Max Planck Institute for Intelligent Systems in Stuttgart (which is installed at the Helmholtz-Zentrum Berlin) they showed that the wavelength can be adjusted precisely by the selection of the excitation frequency. Similar measurements were also carried out at the Paul Scherrer Institute in Switzerland. The results are consistent with a theoretical model which was developed specifically for this study at Oakland University in the USA. What is more, a remarkable phenomenon was predicted, which so far has not been seen directly in the experiments: The speed at which the spin waves travel was calculated to be heavily dependent on their propagation direction (forwards or backwards) - another point which could enable a large number of applications in signal processing.

####

For more information, please click here

Contacts:
Simon Schmitt

49-351-260-3400

Copyright © Helmholtz-Zentrum Dresden-Rossendorf

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Spintronics

Researchers discover a potential application of unwanted electronic noise in semiconductors: Random telegraph noises in vanadium-doped tungsten diselenide can be tuned with voltage polarity August 11th, 2023

Quantum materials: Electron spin measured for the first time June 9th, 2023

Rensselaer researcher uses artificial intelligence to discover new materials for advanced computing Trevor Rhone uses AI to identify two-dimensional van der Waals magnets May 12th, 2023

Spin photonics to move forward with new anapole probe November 4th, 2022

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project