Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing

This is a schematic of an optical tweezer used in a vacuum chamber by Purdue University researchers, who controlled the "electron spin" of a levitated nanodiamond. The advance could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics. Purdue University image/ Tongcang Li
This is a schematic of an optical tweezer used in a vacuum chamber by Purdue University researchers, who controlled the "electron spin" of a levitated nanodiamond. The advance could find applications in quantum information processing, sensors and studies into the fundamental physics of quantum mechanics.

Purdue University image/ Tongcang Li

Abstract:
Electron spin control of optically levitated nanodiamonds in vacuum

Thai M. Hoang1, Jonghoon Ahn2, Jaehoon Bang2 & Tongcang Li1,2,3,4

1Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA. 2School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA. 3Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, USA. 4Purdue Quantum Center, Purdue University, West Lafayette, Indiana 47907, USA. Correspondence and requests for materials should be addressed to T.L. (email: tcli@purdue.edu ).

Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin–optomechanical system for studying macroscopic quantum mechanics.

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing

West Lafayette, IN | Posted on July 20th, 2016

Electrons can be thought of as having two distinct spin states, "up" or "down." The researchers were able to detect and control the electron spin resonance, or its change from one state to the other.

"We've shown how to continuously flip the electron spin in a nanodiamond levitated in a vacuum and in the presence of different gases," said Tongcang Li, an assistant professor of physics and astronomy and electrical and computer engineering at Purdue University.

Findings are detailed in a research paper being published on Tuesday (July 19) in the journal Nature Communications. The electron spin resonance was shown to differ in the presence of helium and oxygen gases, meaning the technique could be used in a new type of sensor to detect and measure gases. Oxygen gas sensors are extensively used to monitor the oxygen concentration in automotive exhaust and in medical instruments such as anesthesia monitors and respirators. Nanodiamond-based sensors represent a potential improvement over conventional sensors.

"While more detailed studies are required to fully understand this phenomenon, our observation suggests a potential application for oxygen gas sensing," Li said.

The paper was authored by postdoctoral research associate Thai Hoang; doctoral students Jonghoon Ahn and Jaehoon Bang; and Li.

The levitating nanodiamonds also could find uses in quantum information processing, experimental techniques to probe fundamental physics in quantum mechanics, and the measurement of magnetic and gravitational fields, which could be applied to computer memory and experiments to search for deviations from Newton's law of gravitation. A Youtube video is available at https://youtu.be/0GX2z7OoIDI

Levitating the nanodiamonds in a vacuum enables precise control and rigorous measurement of the floating particles. The nanodiamonds are about 100 nanometers in diameter, or roughly the size of a virus, and contain "nitrogen vacancy centers" critical to potential practical applications. A nitrogen-vacancy center is an atomic-scale defect formed in the diamond lattice by substituting a nitrogen atom for a carbon atom and creating a neighboring void in the crystal lattice. Researchers can exploit this feature to control the electron spin.

One type of laser was used to "trap" and levitate the nanoparticle in a vacuum chamber, and another was used to monitor the electron spin. A millimeter-scale antenna delivers microwaves to control and flip the electron spin, and a spectrometer detects these changes in spin. A vacuum is needed to reduce interference from air molecules.

Quantum computers would take advantage of phenomena described by quantum theory called "superposition" and "entanglement." Computers based on quantum physics might dramatically increase the capacity to process, store and transmit information.

One long-term goal of the Purdue research is to use the technique to test the famous Schrödinger's cat thought experiment, in which a cat may be both dead and alive at the same time.

"We want to put a single nanodiamond at two different locations at the same time," Li said.

The research was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-3470


Source:
Tongcang Li
765-494-0706

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Quantum Physics

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Magnetism/Magnons

Three-pronged approach discerns qualities of quantum spin liquids November 17th, 2023

Study on Magnetic Force Microscopy wins 2023 Advances in Magnetism Award: Analysis of finite size effects reveals significant consequences for density measurements November 3rd, 2023

Twisted science: NIST researchers find a new quantum ruler to explore exotic matter October 6th, 2023

Researchers discover materials exhibiting huge magnetoresistance June 9th, 2023

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Chip Technology

New chip opens door to AI computing at light speed February 16th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

NRL discovers two-dimensional waveguides February 16th, 2024

Quantum Computing

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

Physicists ‘entangle’ individual molecules for the first time, hastening possibilities for quantum information processing: In work that could lead to more robust quantum computing, Princeton researchers have succeeded in forcing molecules into quantum entanglement December 8th, 2023

World’s first logical quantum processor: Key step toward reliable quantum computing December 8th, 2023

Optical-fiber based single-photon light source at room temperature for next-generation quantum processing: Ytterbium-doped optical fibers are expected to pave the way for cost-effective quantum technologies November 3rd, 2023

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Photonics/Optics/Lasers

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

A battery’s hopping ions remember where they’ve been: Seen in atomic detail, the seemingly smooth flow of ions through a battery’s electrolyte is surprisingly complicated February 16th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project