Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

Electron wave passing through a narrow constriction.
CREDIT: TU Wien
Electron wave passing through a narrow constriction.

CREDIT: TU Wien

Abstract:
In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms arranged in a honeycomb lattice. But graphene research did not stop there. New interesting properties of this material are still being found. An international team of researchers has now explained the peculiar behaviour of electrons moving through narrow constrictions in a graphene layer. The results have been published in the journal Nature Communications.

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

Vienna, Austria | Posted on May 20th, 2016

The Electron is a Wave

"When electrical current flows through graphene, we should not imagine the electrons as little balls rolling through the material", says Florian Libisch from TU Wien (Vienna), who led the theoretical part of the research project. The electrons swash through the graphene as a long wave front, the wavelength can be a hundred times larger than the space between two adjacent carbon atoms. "The electron is not confined to one particular carbon atom, in some sense it is located everywhere at the same time", says Libisch.

The team studied the behaviour of electrons squeezing through a narrow constriction in a graphene sheet. "The wider the constriction, the larger the electron flux - but as it turns out, the relationship between the width of the constriction, the energy of the electrons and the electric current is quite complex", says Florian Libisch. "When we make the constriction wider, the electric current does not increase gradually, it jumps at certain points. This is a clear indication of quantum effects."

If the wavelength of the electron is so large that it does not fit through the constriction, the electron flux is very low. "When the energy of the electron is increased, its wavelength decreases", explains Libisch. "At some point, one wavelength fits through the constriction, then two wavelengths, then three - this way the electron flux increases in characteristic steps." The electric current is not a continuous quantity, it is quantized.

Theory and Experiment

This effect can also be observed in other materials. Detecting it in graphene was much more difficult, because its complex electronic properties lead to a multitude of additional effects, interfering with each other. The experiments were performed at the group of Christoph Stampfer at the RWTH Aachen (Germany), theoretical calculations and computer simulations were performed in Vienna by Larisa Chizhova and Florian Libisch at the group of Joachim Burgdörfer.

For the experiments, the graphene sheets hat to be etched into shape with nanometre precision. "Protecting the graphene layer by sandwiching it between atomic layers of hexagonal boron nitride is critical for demonstrating the quantized nature of current in graphene" explains Christoph Stampfer. Current through the devices is then measured at extremely low temperatures. "We use liquid helium to cool our samples, otherwise the fragile quantum effects are washed out by thermal fluctuations" says Stampfer. Simulating the experiment poses just as much of a challenge. "A freely moving electron in the graphene sheet can occupy as many quantum states as there are carbon atoms", says Florian Libisch, "more than ten million, in our case." This makes the calculations extremely demanding. An electron in a hydrogen atom can be described using just a few quantum states. The team at TU Wien (Vienna) developed a large scale computer simulation and calculated the behaviour of the electrons in graphene on the Vienna Scientific Cluster VSC, using hundreds of processor cores in parallel.

Edge States

As it turns out, the edge of the graphene sheet plays a crucial role. "As the atoms are arranged in a hexagonal pattern, the edge can never be a completely straight line. On an atomic scale, the edge is always jagged", says Florian Libisch. In these regions, the electrons can occupy special edge states, which have an important influence on the electronic properties of the material. "Only with large scale computer simulations using the most powerful scientific computer clusters available today, we can find out how these edge states affect the electrical current", says Libisch. "The excellent agreement between the experimental results and our theoretical calculations shows that we have been very successful."

The discovery of graphene opened the door to a new research area: ultrathin materials which only consist of very few atomic layers are attracting a lot of attention. Especially the combination of graphene and other materials - such as boron nitride, as in this case - is expected to yield interesting results. "One thing is for sure: whoever wants to understand tomorrow's electronics has to know a lot about quantum physics", says Florian Libisch.

####

For more information, please click here

Contacts:
Florian Aigner

43-158-801-41027

Further information:
Dr. Florian Libisch
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: "Size quantization of Dirac fermions in graphene constrictions", Nature Communications, DOI: 10.1038/NCOMMS11528:

Related News Press

News and information

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Thin films

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Graphene/ Graphite

Graphene takes off in composites for planes and cars: The Graphene Flagship identified the strategic advantages of integrating graphene into fibre composites, used to build planes and cars December 5th, 2019

NAUM’19 reviewed the increasing contribution of graphene nanotubes to sustainable development November 21st, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Quantum Physics

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

2 Dimensional Materials

A cheaper way to scale up atomic layer deposition November 15th, 2019

Magnets for the second dimension November 15th, 2019

Better biosensor technology created for stem cells: Rutgers innovation may help guide treatment of Alzheimer's, Parkinson's diseases November 12th, 2019

Possible Futures

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Chip Technology

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

ACM Research Announces Global Commercial Availability of Environmentally Friendly, Cost-Effective Advanced Wafer Cleaning System: Ultra C Tahoe delivers single wafer cleaning performance with one-tenth of the sulfuric acid consumption December 3rd, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Nanoelectronics

ACM Research Announces Global Commercial Availability of Environmentally Friendly, Cost-Effective Advanced Wafer Cleaning System: Ultra C Tahoe delivers single wafer cleaning performance with one-tenth of the sulfuric acid consumption December 3rd, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Nano bulb lights novel path: Rice University engineers create tunable, nanoscale, incandescent light source September 20th, 2019

Optical vacuum cleaner can manipulate nanoparticles: The TPU and international researchers developed a concept for constructing an optical vacuum cleaner; due to its optical properties, it can trap nanoparticles from the environment; currently, there are no sufficiently effective September 13th, 2019

Discoveries

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Electro-optical device provides solution to faster computing memories and processors: First-of-a-kind electro-optical device provides solution to faster and more energy efficient computing memories and processors December 2nd, 2019

Growing nano-tailored surfaces using micellar brushes November 29th, 2019

Materials/Metamaterials

Toward more efficient computing, with magnetic waves: Circuit design offers a path to 'spintronic' devices that use little electricity and generate practically no heat November 29th, 2019

NAUM’19 reviewed the increasing contribution of graphene nanotubes to sustainable development November 21st, 2019

Scientists probe the limits of ice: Transition between ice and liquid water gets fuzzy at the nanoscale November 9th, 2019

Disordered proteins become stable, 'super-sticky' materials: Improved protein control could lead to wound-healing gels and other applications November 3rd, 2019

Announcements

Self-driving microrobots December 10th, 2019

CEA-Leti Thin-Film Batteries Target Extended Applications and Improved Performance in Medical Implants: IEDM 2019 Paper Reports Millimeter-Scale TFBs Exhibit the Best Performance In Both Energy and Power Densities December 10th, 2019

Arrowhead Pharmaceuticals Closes Underwritten Public Offering with Gross Proceeds of $266.8 Million December 7th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Self-driving microrobots December 10th, 2019

'Buildings' in human bone may hold key to stronger 3D-printed lightweight structures December 6th, 2019

Artificial cells act more like the real thing December 6th, 2019

Scientists see defects in potential new semiconductor: Discovery could help in effort to make high-powered electronics more efficient December 5th, 2019

Quantum nanoscience

Theorem explains why quantities such as heat and power can fluctuate in microscopic system: Brazilian researchers participate in theoretical study that could have practical applications in nanoscale machine optimization November 26th, 2019

A distinct spin on atomic transport: Work that demonstrates simultaneous control over transport and spin properties of cold atoms establishes a framework for exploring concepts of spintronics and solid-state physics November 8th, 2019

Scientists tame Josephson vortices November 1st, 2019

Extracting hidden quantum information from a light source October 25th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project