Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

Electron wave passing through a narrow constriction.
CREDIT: TU Wien
Electron wave passing through a narrow constriction.

CREDIT: TU Wien

Abstract:
In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms arranged in a honeycomb lattice. But graphene research did not stop there. New interesting properties of this material are still being found. An international team of researchers has now explained the peculiar behaviour of electrons moving through narrow constrictions in a graphene layer. The results have been published in the journal Nature Communications.

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

Vienna, Austria | Posted on May 20th, 2016

The Electron is a Wave

"When electrical current flows through graphene, we should not imagine the electrons as little balls rolling through the material", says Florian Libisch from TU Wien (Vienna), who led the theoretical part of the research project. The electrons swash through the graphene as a long wave front, the wavelength can be a hundred times larger than the space between two adjacent carbon atoms. "The electron is not confined to one particular carbon atom, in some sense it is located everywhere at the same time", says Libisch.

The team studied the behaviour of electrons squeezing through a narrow constriction in a graphene sheet. "The wider the constriction, the larger the electron flux - but as it turns out, the relationship between the width of the constriction, the energy of the electrons and the electric current is quite complex", says Florian Libisch. "When we make the constriction wider, the electric current does not increase gradually, it jumps at certain points. This is a clear indication of quantum effects."

If the wavelength of the electron is so large that it does not fit through the constriction, the electron flux is very low. "When the energy of the electron is increased, its wavelength decreases", explains Libisch. "At some point, one wavelength fits through the constriction, then two wavelengths, then three - this way the electron flux increases in characteristic steps." The electric current is not a continuous quantity, it is quantized.

Theory and Experiment

This effect can also be observed in other materials. Detecting it in graphene was much more difficult, because its complex electronic properties lead to a multitude of additional effects, interfering with each other. The experiments were performed at the group of Christoph Stampfer at the RWTH Aachen (Germany), theoretical calculations and computer simulations were performed in Vienna by Larisa Chizhova and Florian Libisch at the group of Joachim Burgdörfer.

For the experiments, the graphene sheets hat to be etched into shape with nanometre precision. "Protecting the graphene layer by sandwiching it between atomic layers of hexagonal boron nitride is critical for demonstrating the quantized nature of current in graphene" explains Christoph Stampfer. Current through the devices is then measured at extremely low temperatures. "We use liquid helium to cool our samples, otherwise the fragile quantum effects are washed out by thermal fluctuations" says Stampfer. Simulating the experiment poses just as much of a challenge. "A freely moving electron in the graphene sheet can occupy as many quantum states as there are carbon atoms", says Florian Libisch, "more than ten million, in our case." This makes the calculations extremely demanding. An electron in a hydrogen atom can be described using just a few quantum states. The team at TU Wien (Vienna) developed a large scale computer simulation and calculated the behaviour of the electrons in graphene on the Vienna Scientific Cluster VSC, using hundreds of processor cores in parallel.

Edge States

As it turns out, the edge of the graphene sheet plays a crucial role. "As the atoms are arranged in a hexagonal pattern, the edge can never be a completely straight line. On an atomic scale, the edge is always jagged", says Florian Libisch. In these regions, the electrons can occupy special edge states, which have an important influence on the electronic properties of the material. "Only with large scale computer simulations using the most powerful scientific computer clusters available today, we can find out how these edge states affect the electrical current", says Libisch. "The excellent agreement between the experimental results and our theoretical calculations shows that we have been very successful."

The discovery of graphene opened the door to a new research area: ultrathin materials which only consist of very few atomic layers are attracting a lot of attention. Especially the combination of graphene and other materials - such as boron nitride, as in this case - is expected to yield interesting results. "One thing is for sure: whoever wants to understand tomorrow's electronics has to know a lot about quantum physics", says Florian Libisch.

####

For more information, please click here

Contacts:
Florian Aigner

43-158-801-41027

Further information:
Dr. Florian Libisch
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13608

Copyright © Vienna University of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Original publication: "Size quantization of Dirac fermions in graphene constrictions", Nature Communications, DOI: 10.1038/NCOMMS11528:

Related News Press

Quantum Physics

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

Graphene/ Graphite

Buckyballs on gold are less exotic than graphene July 22nd, 2022

2 Dimensional Materials

Buckyballs on gold are less exotic than graphene July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

News and information

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Thin films

Thin-film, high-frequency antenna array offers new flexibility for wireless communications November 5th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an 'absolute top transfer' September 10th, 2021

Stress-free path to stress-free metallic films paves the way for next-gen circuitry: Optimized sputtering technique helps minimize stress in tungsten thin films July 4th, 2021

Thin is now in to turn terahertz polarization: Rice lab’s discovery of ‘magic angle’ builds on its ultrathin, highly aligned nanotube films May 20th, 2021

Possible Futures

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Chip Technology

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Nanoelectronics

Atomic level deposition to extend Moore’s law and beyond July 15th, 2022

Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: Researchers reveal why nanowires stick to each other February 11th, 2022

Discoveries

HKU physicists found signatures of highly entangled quantum matter July 22nd, 2022

How different cancer cells respond to drug-delivering nanoparticles: The findings of a large-scale screen could help researchers design nanoparticles that target specific types of cancer July 22nd, 2022

The best semiconductor of them all? Researchers have found a material that can perform much better than silicon. The next step is finding practical and economic ways to make it July 22nd, 2022

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Materials/Metamaterials

At the water’s edge: Self-assembling 2D materials at a liquid–liquid interface: Scientists find a simple way to produce heterolayer coordination nanosheets, expanding the diversity of 2D materials July 22nd, 2022

Strain-sensing smart skin ready to deploy: Nanotube-embedded coating detects threats from wear and tear in large structures July 15th, 2022

New protocol for assessing the safety of nanomaterials July 1st, 2022

Nanotubes: a promising solution for advanced rubber cables with 60% less conductive filler June 1st, 2022

Announcements

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

First electric nanomotor made from DNA material: Synthetic rotary motors at the nanoscale perform mechanical work July 22nd, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Buckyballs on gold are less exotic than graphene July 22nd, 2022

Quantum computer works with more than zero and one: Quantum digits unlock more computational power with fewer quantum particles July 22nd, 2022

Biology’s hardest working pigments and ‘MOFs’ might just save the climate: A range of processes that currently depend on fossil fuels but are really hard to electrify will depend on the development of genuinely clean fuels, and for that to happen, much more efficient catalysts wi July 22nd, 2022

Generating power where seawater and river water meet July 22nd, 2022

Quantum nanoscience

Scientists capture a ‘quantum tug’ between neighboring water molecules: Ultrafast electrons shed light on the web of hydrogen bonds that gives water its strange properties, vital for many chemical and biological processes July 8th, 2022

Undergrads begin summer quantum research with support from Moore Foundation, Chicago region universities, national labs: Inaugural cohort of students join quantum research labs around the Midwest, planting the seeds for a diverse and inclusive quantum workforce June 17th, 2022

Bumps could smooth quantum investigations: Rice University models show unique properties of 2D materials stressed by contoured substrates June 10th, 2022

An atomic-scale window into superconductivity paves the way for new quantum materials: New technique helps researchers understand unconventional superconductors June 3rd, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project