Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > An up-close view of bacterial 'motors'

Abstract:
Bacteria are the most abundant form of life on Earth, and they are capable of living in diverse habitats ranging from the surface of rocks to the insides of our intestines. Over millennia, these adaptable little organisms have evolved a variety of specialized mechanisms to move themselves through their particular environments. In two recent Caltech studies, researchers used a state-of-the-art imaging technique to capture, for the first time, three-dimensional views of this tiny complicated machinery in bacteria.



Credit: Science/AAAS

An up-close view of bacterial 'motors'

Pasadena. CA | Posted on March 30th, 2016

"Bacteria are widely considered to be 'simple' cells; however, this assumption is a reflection of our limitations, not theirs," says Grant Jensen, a professor of biophysics and biology at Caltech and an investigator with the Howard Hughes Medical Institute (HHMI). "In the past, we simply didn't have technology that could reveal the full glory of the nanomachines--huge complexes comprising many copies of a dozen or more unique proteins--that carry out sophisticated functions."

Jensen and his colleagues used a technique called electron cryotomography to study the complexity of these cell motility nanomachines. The technique allows them to capture 3-D images of intact cells at macromolecular resolution--specifically, with a resolution that ranges from 2 to 5 nanometers (for comparison, a whole cell can be several thousand nanometers in diameter). First, the cells are instantaneously frozen so that water molecules do not have time to rearrange to form ice crystals; this locks the cells in place without damaging their structure. Then, using a transmission electron microscope, the researchers image the cells from different angles, producing a series of 2-D images that--like a computed tomography, or CT, scan--can be digitally reconstructed into a 3-D picture of the cell's structures. Jensen's laboratory is one of only a few in the entire world that can do this type of imaging.

In a paper published in the March 11 issue of the journal Science, the Caltech team used this technique to analyze the cell motility machinery that involves a structure called the type IVa pilus machine (T4PM). This mechanism allows a bacterium to move through its environment in much the same way that Spider-Man travels between skyscrapers; the T4PM assembles a long fiber (the pilus) that attaches to a surface like a grappling hook and subsequently retracts, thus pulling the cell forward.

Although this method of movement is used by many types of bacteria, including several human pathogens, Jensen and his team used electron cryotomography to visualize this cell motility mechanism in intact Myxococcus xanthus--a type of soil bacterium. The researchers found that the structure is made up of several parts, including a pore on the outer membrane of the cell, four interconnected ring structures, and a stemlike structure. By systematically imaging mutants, each of which lacked one of the 10 T4PM core components, and comparing these mutants with normal M. xanthus cells, they mapped the locations of all 10 T4PM core components, providing insights into pilus assembly, structure, and function.

"In this study, we revealed the beautiful complexity of this machine that may be the strongest motor known in nature. The machine lets M. xanthus, a predatory bacterium, move across a field to form a 'wolf pack' with other M. xanthus cells, and hunt together for other bacteria on which to prey," Jensen says.

Another way that bacteria move about their environment is by employing a flagellum--a long whiplike structure that extends outward from the cell. The flagellum is spun by cellular machinery, creating a sort of propeller that motors the bacterium through a substrate. However, cells that must push through the thick mucus of the intestine, for example, need more powerful versions of these motors, compared to cells that only need enough propeller power to travel through a pool of water.

In a second paper, published in the online early edition of the Proceedings of the National Academy of Sciences (PNAS) on March 14, Jensen and his colleagues again used electron cryotomography to study the differences between these heavy-duty and light-duty versions of the bacterial propeller. The 3-D images they captured showed that the varying levels of propeller power among several different species of bacteria can be explained by structural differences in these tiny motors.

In order for the flagellum to act as a propeller, structures in the cell's motor must apply torque--the force needed to cause an object to rotate--to the flagellum. The researchers found that the high-power motors have additional torque-generating protein complexes that are found at a relatively wide radius from the flagellum. This extra distance provides greater leverage to rotate the flagellum, thus generating greater torque. The strength of the cell's motor was directly correlated with the number of these torque-generating complexes in the cell.

"These two studies establish a technique for solving the complete structures of large macromolecular complexes in situ, or inside intact cells," Jensen says. "Other structure determination methods, such as X-ray crystallography, require complexes to be purified out of cells, resulting in loss of components and possible contamination. On the other hand, traditional 2-D imaging alone doesn't let you see where individual protein pieces fit in the complete structure. Our electron cryotomography technique is a good solution because it can be used to look at the whole cell, providing a complete picture of the architecture and location of these structures."

###

The work involving the type IVa pilus machinery was published in a Science paper titled "Architecture of the type IVa pilus machine." First author Yi-Wei Chang is a research scientist at Caltech; additional coauthors include collaborators from the Max Planck Institute for Terrestrial Microbiology, in Marburg, Germany, and from the University of Utah. The study was funded by the National Institutes of Health (NIH), HHMI, the Max Planck Society, and the Deutsche Forschungsgemeinschaft.

Work involving the flagellum machinery was published in a PNAS paper titled "Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold." Additional coauthors include collaborators from Imperial College London; the University of Texas Southwestern Medical Center; and the University of Wisconsin-Madison. The study was supported by funding from the UK's Biotechnology and Biological Sciences Research Council and from HHMI and NIH.

####

For more information, please click here

Contacts:
Deborah Williams-Hedges

626-395-3227

Copyright © California Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

RELATED JOURNAL ARTICLE:

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Discovery of new Li ion conductor unlocks new direction for sustainable batteries: University of Liverpool researchers have discovered a new solid material that rapidly conducts lithium ions February 16th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project